

A LOW COST AUTOMATED

LIVESTOCK TRACKING SYSTEM

A Thesis

by

JASON GRUBB

Submitted to the Graduate School

Appalachian State University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2010

Department of Computer Science

A LOlW COST AUTOMATED

LIVESTOCK TRACKING SYSTEM

A Thesis

By

JASON GRUBB

August 2010

APPROVED BY

James B. Fenwick Jr.

Chairperson, Thesis Committee

E. Frank Barry

Member, Thesis Committee

James T. Wilkes

Member, Thesis Committee

Chairperson, Department of Computer Science

Edelma D. Huntley

Dean, Research and Graduate Studies

Copyright by Jason Grubb 2010

All Rights Reserved

 iv

ABSTRACT

A LOW COST AUTOMATED LIVESTOCK TRACKING SYSTEM (August 2010)

Jason Grubb, B.S., Appalachian State University

M.S., Appalachian State University

Chairperson: Dr. James B. Fenwick Jr.

 Successful farming has always required intense manual labor and acute

management skills. The technological advancements of two agricultural revolutions

reduced the quantity of manual labor required but human direction is still necessary

(Rasmussen, 1962). In the last recent years, the level of automation in farming processes

has increased significantly. A main component of these new strategies is livestock

monitoring information. Animal tracking provides valuable information including recent

location, movement and feeding patterns, and land usage. The collection and storage of

this information as well as actions based upon the information are becoming more

automated. Technologies such as global positioning system (GPS), radio frequency

identification (RFID), wireless networking, and mobile computing systems are being

utilized to target specific needs of farmers (Barbari, Conti, & Simonini, 2010).

 This research will develop and evaluate a prototype data acquisition system for

tracking livestock. Open source, freely distributed technologies will be utilized whenever

possible in an effort to reduce cost. This study will evaluate the performance and cost of

this livestock management system.

 v

TABLE OF CONTENTS

ABSTRACT ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

Chapter 1: Introduction ... 1

1.1 Livestock Tracking ... 1

1.2 Automated Systems .. 3

1.3 Thesis Research Scope .. 4

Chapter 2: Related Work .. 6

2.1 Commercial Systems .. 6

2.1.1 Herd-Pro ... 6

2.1.2 Cow Sense .. 7

2.1.3 TrackLivestock.net... 9

2.1.4 CattleMax CS ... 10

2.1.5 RFID Hardware .. 11

2.2 Academic Research on Systems ... 12

2.2.1 FARMA ... 12

2.2.2 RFID Animal Identification Economics .. 14

 vi

Chapter 3: Technology Overview ... 18

3.1 RFID Technology ... 18

3.2 RFID Hardware ... 20

3.3 Sun SPOTs .. 21

3.4 MySQL ... 23

3.5 Apache .. 24

3.6 PHP ... 24

Chapter 4: Design ... 26

4.1 System Description ... 26

4.2 LCTracker Setup ... 28

4.3 Hardware Features .. 30

4.4 Graphical User Interface ... 32

Chapter 5: Implementation ... 34

5.1 LCTracker ... 34

5.2 RFID Hardware ... 36

5.2.1 RFID Reader .. 36

5.2.2 RFID Tags .. 38

5.3 SPOT Communication .. 41

5.4 MySQL Database .. 43

5.4.1 Database Design... 43

 vii

5.4.2 Database Connections .. 45

Chapter 6: Evaluation ... 49

6.1 RFID Hardware ... 49

6.1.1 Reader and Tag Performance ... 49

6.1.2 Reader Interface ... 52

6.2 SPOT Hardware .. 53

6.3 Cost ... 54

6.3.1 Hardware Costs .. 54

6.3.2 Software Cost ... 57

Chapter 7: Conclusion and Future Work .. 58

7.1 Conclusion .. 58

7.2 Future Work .. 59

7.2.1 RFID Reader Controller ... 59

7.2.2 Repeaters .. 60

7.2.3 LCTracker System Software .. 61

7.2.4 Additional Automation Possibilities .. 62

REFERENCES ... 64

APPENDIX A ... 68

VITA ... 80

 viii

LIST OF TABLES

2.1 StocKeeper purchase and lease price data ...7

2.2 Cow Sense purchase price data ..9

2.3 CattleMax CS purchase price data ...10

2.4 RFID pricing ..11

6.1 Maximum read distances ...50

6.2 Implementation RFID hardware costs ...55

6.3 SPOT hardware costs ...56

 ix

LIST OF FIGURES

4.1 LCTracker example scenario ..28

4.2 Initial installation and setup ..30

4.3 New RFID reader installation and setup ...30

5.1 LCTracker Implementation Design ..35

5.2 Windows RFID API Usage ...38

5.3 RFID Tag Labels...40

5.4 RFID Tag Wristbands ...40

5.5 Rigid Plastic Tag ...41

5.6 Java RFID Reader Driver Code Listing ..43

5.7 tmpStore Database ..44

5.8 lctracker Database ...45

5.9 C# MySQL Connection ..46

5.10 Java MySQL Connection ...47

5.11 PHP MySQL Connection ...48

 1

CHAPTER 1: INTRODUCTION

1.1 Livestock Tracking

 The identification of livestock in the United States began in the late 1800s and

was used as a way to show ownership and deter theft (USDA, 2010a). It was difficult for

a thief to sell livestock that had been branded, since it could be traced back to its rightful

owner. This identification has traditionally been achieved via hot iron branding, ear

notches, paint marks, and even tattoos. The same marks were typically made to an entire

herd, which makes tracking a single animal impossible. Tracking different herds of

animals meant a manual identification of the symbols, which led to complications when

markings from one herd were indistinguishable from another. The transfer of the

ownership of animals presented complications since cattle had to be rebranded in order to

be identified with the new herd. Some more modern techniques, such as numbered ear

tags provide a quicker, easier, and more humane method of identification. However, they

frequently have many of the same drawbacks as the older methods.

 The demand for livestock tracking mechanisms has increased substantially in

recent years. This demand is being fueled by a number of factors including disease

concerns (control, eradication, surveillance, monitoring), regionalization, global trade,

livestock production efficiency, consumer concerns over food safety, and emergency

management programs (USDA, 2010a). The increasing public awareness of the

advantages of livestock tracking has also pressured governments to get involved. In the

 2

U.S., incidents such as domestic reports of mad cow disease have prompted the U.S.

Department of Agriculture (USDA) to create a nationwide animal tracking system in

2004 (Johnston, 2003).

 This tracking system, dubbed NAIS, was initially established as a voluntary

system to help protect against the spread of animal diseases. The NAIS proposed that

every farm register with the USDA and provide location and contact information. The

next step in NAIS implementation is the tracking of animals and storage of these records

in local and state databases (USDA, 2007). Through this national database structure,

animals can be tracked throughout their lifecycle. In the event that a particular animal

was found to carry a disease such as mad cow, the origin of the animal and every transfer

along the way could be found. Any potentially contaminated animal could then be

identified.

 Irrespective of the advantages that the NAIS had to offer, it had strong opposition

from a substantial population of livestock farmers. Larger farming facilities have been

more receptive of the proposed regulations since many of them have portions of the

requirements already in place. They are also able to absorb the higher prices more easily

since implementation costs can be amortized over a larger herd (Jeffries, 2006). Many

small farms oppose the NAIS as they foresee it moving from a voluntary to a required

system. The added costs incurred by the small farmer would have to be passed on to the

local meat markets and consumers, causing many small farms to go out of business

(Jeffries, 2006). Many farmers were also concerned about confidentiality and privacy

with this national database. Due to these concerns, the USDA announced on February 5,

2010 that it would cancel the NAIS and revise its policy on animal identification and

 3

offer new methods for tracking livestock (APHIS, 2010). While the revised policy is not

complete at the time of this research, the goals are to develop a broad set of criteria and

leave it up to the states to determine methods of implementation. In addition, the USDA

is only targeting animals destined for interstate commerce, and is encouraging the use of

lower cost technology with the new policies and procedures (USDA, 2010a). This

“open” policy allows a wide variety of possible implementations.

1.2 Automated Systems

 As herd sizes grow and identify requirements increase, it becomes more difficult

for farmers to remember and to record the large amount of data accumulated for each

animal they oversee (Rossing, 1999). Through the use of automated systems, the

collection and storage of tracking data can be completed with little or no human

intervention. The automated identification and tracking of individual livestock enables

herds to be managed more effectively and efficiently, giving even small farmers

additional incentives for implementing a tracking system beyond becoming NAIS

compliant.

 The most significant identification advances have come via electronic tracking

methods such as radio frequency identification (RFID). RFID systems use a tag with a

unique serial number and an antenna. A reader device accesses the tag information via

the antenna. RFID ear tags are just like standard livestock ear tags except they contain

the proper circuitry to be read by an RFID antenna. Ear tags are the most common type

for use with larger livestock. GPS systems have also been used as an electronic tracking

method. This system places GPS receivers on every animal so that their exact location

can be found. The GPS collars required for this system can cost up to $4500 each,

 4

making this solution much less common (Farren, 2008). Barcodes placed on existing ear

tags enable electronic identification without having to re-tag an animal. Reading these

tags with a handheld reader requires close proximity and a direct line of sight to the

barcode. Like GPS, this method has not gained broad acceptance of RFID tracking.

 Farm management systems using the new technologies allow livestock

inventories to be electronically monitored at all times. After the initial setup of joining a

particular animal with a unique ID, the time, date, and location are recorded every time

the animal is within range of an RFID reader. These readers can be placed at key

locations throughout the farm, such as feeding stations, barns, choke points, gates, and

other custom locations as necessary for a particular farm’s need. In the case of GPS

solutions, even more accurate location information may be possible. Knowing the most

common locations for animals, as well as their travel patterns, allows the use of fields and

shelter to be optimized. The frequency of location changes for an animal, as well as their

rate of recurrence at feeding stations, can also indicate health issues (RFID, 2010).

1.3 Thesis Research Scope

 The lack of technology standardization by the federal government and the push

for cost conscious animal identification solutions opens the door for solutions like this

research provides. This thesis proposes that a low-cost, automated livestock tracking

system built on open-source software is possible. Reducing automation costs makes such

a system a viable alternative for smaller budget farms, minimizing one of the major

issues that farmers had with the NAIS. The proposed system, LCTracker, will integrate

the automated tracking virtues of an RFID based electronic identification system with a

web based management system. Utilizing freely available software technologies and

 5

providing the system software open-source allows for a cost effective, yet expandable

solution. The future work section of this research will explore the expansion of this

system beyond the scope of its initial implementation.

 6

CHAPTER 2: RELATED WORK

2.1 Commercial Systems

 There are many commercial livestock management systems available today. The

features of these systems vary from manual-entry systems to those designed for complete

business management. These packages were explored and evaluated for their features,

cost of implementation, and ability to integrate with electronic identification solutions.

2.1.1 Herd-Pro

 Herd-Pro offers livestock management software called StocKeeper (Herd-Pro,

2008). This product provides a Microsoft Windows main user interface and can be

expanded to include a Palm OS mobile solution. The main interface has the ability to set

warning alerts, define custom fields and reports, and has multi-language support.

StocKeeper works with Destron RFID tags and readers by Digital Angel. This type of

RFID equipment operates in the low frequency band, and therefore provides a maximum

read distance of around one meter. This does not pose a problem for wand type readers,

but to use automated panel readers the livestock must be placed in a chute or other type

of confinement. A Microsoft Access database is used for persistent storage, and is

accessible either directly or from within the application. The database is stored locally

which restricts access to the data and requires a backup solution be provided by the

farmer.

 7

 The Herd-Pro software does not have any setup fees and can be purchased

outright or leased from the company. Two versions are offered, standard and

professional. The standard product has a maximum head count of 300 and provides only

limited customization. The professional version has an unlimited head count and offers

custom fields and inventory analysis not available in the standard edition. The leasing

program is a lease-to-own option, finalizing after the fifth year. If the contract is broken

before the fifth year, licenses are voided. As shown in Table 2.1, support is also offered

on a yearly basis. An active support contract offers the end user technical support and

product patches and upgrades (Herd-Pro, 2008).

Table 2.1

StocKeeper purchase and lease price data

 Purchase Lease Support

Standard $495 $225/yr. $125/yr.

Professional $995 $430/yr. $250/yr.

 Herd-Pro has an informative website that details the features of the system and the

pricing options available. It gives a simple explanation of RFID identification, but does

not elaborate on its use within StocKeeper. Email inquiries were responsive, answering

all questions within 24 hours. Phone support is available, but the number is not toll free.

2.1.2 Cow Sense

 Midwest MicroSystems offers management tools targeted to the beef cattle

producer (Midwest, 2008). This software offers data entry and reporting tools similar to

the other commercial systems that were evaluated. Cow Sense also offers analysis on

 8

performance, breeding, and economic contributions down to the individual animal. It can

also be customized by creating user defined fields and reports. This product is marketed

as a base product for management, with add-on modules for specific tasks. These

modules offer functionality for marketing, animal transfer, electronic data transfer, as

well as an interface that works with the PocketPC OS of Microsoft Windows mobile

computing systems. Cow Sense offers the Nomad handheld computer for $1354. The

RFID vendors supported by Cow Sense are Allflex and Destron. This is the same type of

RFID equipment supported by the Herd-Pro product. It retains the same features and

limitations such as one meter maximum read distances and wider use of wand readers vs.

automated panel readers. This Microsoft Windows based software uses Microsoft Access

for its database, which is only accessible through the Cow Sense software.

 The pricing for Cow Sense is the most complicated of the evaluated systems. The

base product is available in five versions, with many add-ons available. The pricing

scheme runs from a limit of 75 animals to unlimited animals with unlimited users. Table

2.2 shows pricing for the main product, which has a feature set similar to the other

evaluated systems. Telephone support is included for 30 minutes over 30 days with

purchase. An online version is also presented, which moves the interface and database

off-site. This requires internet access on the computer being used. This version offers

very basic functionality that is far below what is offered in the standard product

(Midwest, 2008).

 9

Table 2.2

Cow Sense purchase price data

 CS75 Unlimited Commercial Purebred Multiuser Online Support

Price $149 $265 $445 $535 $1995 $4.95/mo. $1/min.

 Midwest MicroSystems has a website defining all of the Cow Sense modules and

pricing information. The support telephone number is not toll free, and is only available

from 8-5 CST. There is voicemail with the option for a callback. Email response,

however, was quick and answered technical details thoroughly.

2.1.3 TrackLivestock.net

 The simplest commercial management software evaluated was the

TrackLivestock.net system (Grow, 2006). This online only solution has fixed fields for

predefined types of animals, including cattle, goats, hogs, and sheep. There are no

custom fields or reports that can be created. TrackLivestock.net also doesn’t have the

ability to connect to an electronic ID technology. However, an Internet connection is all

that is required and all data is hosted remotely and backed up nightly with no interaction

from the end user. Data can be exported from the system in Microsoft Excel format for

local use. While this program does not have the customization and automation features

of the competing products, it has one main asset going for it. This software is free to set

up and free to use, regardless of the number of animals tracked. Support is only available

via email, with no telephone number provided (Grow, 2006).

 10

2.1.4 CattleMax CS

 CattleMax CS livestock management software has many of the same features as

the other products evaluated, with custom reports and advanced reporting and analysis

(Cattlesoft, 2010). What separates CattleMax CS from its peers is its intuitive graphical

user interface. This slick icon-driven interface is the most modern interface reviewed and

is similar in functionality to the familiar Microsoft Office suite of programs. The RFID

options for CattleMax are Allflex and Destron, like many of the other systems evaluated.

Allflex and Destron use the low frequency readers and tags that restrict read range to

about one meter. CattleMax CS requires Microsoft Windows XP, Vista or System 7 and

at least 1024 x 768 resolution. Software acquisition is a one time purchase and is based

on the number of animals tracked and commercial or registered use. This is detailed in

Table 2.3. Registered use adds genetic performance tracking and reporting. Support is

free and is available via toll free number or online (Cattlesoft, 2010).

Table 2.3

CattleMax CS purchase price data

 < 50 Animals Unlimited Animals Online Backup

Commercial $125 $245 $60/yr.

Registered $295 $495 $60/yr.

 CattleMax offers a well designed and professional looking website offering all

information given above. When attempting to call the toll free number, however, it

always went to voicemail requesting a callback number. This occurred even during listed

operating hours. There was also no email response as of this writing. As the most

 11

complete product evaluated, it was surprising that there was no response to email

inquiries.

2.1.5 RFID Hardware

 The common RFID equipment manufacturers among the evaluated software

vendors were Destron and Allflex. These vendors offer RFID readers and tags in the low

frequency radio band that is common for the electronic identification (EID) of cattle.

Both companies produce similar products at similar pricing. Cost data for these systems

was accumulated from vendors such as QC Supply (QC Supply, 2009), EarTagCentral

(DHIA, 2008), and CattleStore (CattleStore.com, 2008). Table 2.4 shows average pricing

for Destron and Allflex RFID equipment. Regular tags are standard size, extended range

tags. These tags can be read at distances up to four feet. The combo tags house an RFID

tag as well as display a visual lot number. This type of tag is useful for quick human

identification. Wand type readers require a human to move the wand over the tag on an

animal. The readings can be stored in the reader or to a connected computer via an RS-

232 interface. The Panel readers consist of a combined reader and antenna combo, such

as the Allflex, or separate items, like the Destron.

Table 2.4

RFID Pricing

 Regular Tag Combo Tag Wand Reader Panel Reader

Allflex $2.45 $3.35 $400 $2,700

Destron $2.00 $3.20 $600 $3,800

 12

2.2 Academic Research on Systems

 Academic research on RFID based animal identification systems has expanded in

recent years. Studies have been done on management systems and implementations such

as this one, as well as on the economic viability of such processes. The findings from

these works demonstrate the gains, both economic and social, for such systems. They

also present the economic hurdles that slow the transition to RFID identification systems

as a replacement for current methods. The findings from the research outlined in this

section substantiate the need for a low cost RFID animal management solution.

2.2.1 FARMA

 FARMA is a research project and implementation of an RFID based animal

identification and farm management system. It explores the use of low frequency RFID

tags for animal identification, databases, and networking technologies to develop an

integrated framework for animal identification and monitoring (Voulodimos, Patrikakis,

Sideridis, Ntafis, & Xylouri, 2010). This research is one of the first that not only

explores the use of RFID for identification and tracking of animals, but is a complete

system built around this information. The FARMA platform consists of a central

database that contains information about all farms in the system, including their owners,

location, and RFID numbers used. Each farm then has its own local database that only

stores information about the animals on that farm. The RFID implementation

incorporates an animal’s tag, a portable RFID reader, and a mobile electronic device that

can interface with the reader and store the gathered information.

 FARMA includes, in its user interface, menus for both the farmer and

veterinarian. Appropriate options are presented to each type of user. For instance,

 13

veterinarians can manage examinations, vaccinations, diseases, and animal death, while

farmers can control new births, tagging, weighing, and sale categories (Voulodimos et al.,

2010). This menu system updates the local database, which has an interface with the

central database. Periodic updates can then be made to keep the two storage systems in

sync.

 The FARMA proposal and implementation includes a network system to integrate

the disparate components of its structure. Both wired and wireless options are available.

Portable devices can connect to the local database wirelessly through either 802.11

wireless networking or through mobile broadband connections (Voulodimos et al., 2010).

When neither of these wireless options are available, the collected data are stored within

the portable device and then transferred to the local database when a wired connection

can be made.

 The FARMA implementation was field tested on a small sheep and goat farm

(Voulodimos et al., 2010). Data were collected, stored, and managed by both the farms

owner and veterinarian. The system presented no serious problems and was generally

well received by animal and operator alike. Multiple tagging options were explored, with

ear tagging determined to be the most viable option. The wireless networking

technologies that were employed provided good results, but were determined to be

potentially cost prohibitive or too complex for average farmer implementation. Direct

connection of the mobile device used to temporarily store the gathered data was

determined to be the best default solution for rural farms. The limitations of the

international standards for RFID of animals were also realized during the field trial. The

number of devices compliant to these regulations is small and they are limited when

 14

compared to emerging trends in the market. Future enhancement possibilities that were

explored include the use of Global Positioning System (GPS) modules in the system to

provide precise location information.

 The FARMA system incorporates many of the same features and ideas as the

LCTracker system. The fundamental designs of having remote locations networked to a

central database system are equivalent, but the means are different. Where FARMA uses

the 802.11 wireless protocol, LCTracker uses 802.15 radio standard for communication.

LCTracker also increases automation opportunities by utilizing ultra-high frequency

RFID panels that can read animal tags at a distance. This mitigates the labor required in

identifying the animals. The LCTracker system reduces costs by not only providing the

software free of charge, but by the use of open source platforms for development. Where

FARMA uses costly Microsoft development, hosting, and storage subsystems, LCTracker

uses freely available products from Apache, MySQL, and PHP.

2.2.2 RFID Animal Identification Economics

 Gary Halverson studies actual cost vs. gain for producers utilizing RFID animal

identification methods in his dissertation completed at Utah State University (Halverson,

2008). Halverson first set out to determine the costs incurred by producers utilizing

RFID identification techniques within their herd management styles. To do this, he

obtained costs from three sources: a survey of producers using RFID, databases and

animal ID software providers, and third-party facilitators (Halverson, 2008). The surveys

requested the type of RFID equipment in use, size of operation, other forms of animal ID,

and additional time activities required with the use of RFID.

 15

 Halverson determined that a one size fits all cost-per-animal calculation is

impossible since animal identification is an ongoing activity along with all other farm

activities (2008). Management techniques caused the largest variance in cost-per-animal

calculations, with production size and producer involvement causing smaller, but

potentially significant, variances. If producers were already restraining animals for

management tagging, branding, or vaccinations, then there is no significant labor cost

added by RFID tagging the animal. If, however, the previous management style of the

producer did not involve restraining the animal before the time necessary to apply an

RFID tag, then the labor for this operation was found to be the most significant factor in

RFID implementation costs (Halverson, 2008).

 Additional implementation costs beyond tagging labor include the physical tags,

database and software subscriptions, labor for entering data, and RFID readers. It was

found that the visual management tags that were commonly in use averaged $1.00 each

and RFID cost an average of $2.00 each (Halverson, 2008). After RFID tags are

purchased, they have to be entered into a database and associated with a particular

animal. The labor for this, along with possible charges by the database provider, were

found to be $0.40 - $-.50 per animal. The database providers surveyed had annual

subscription costs ranging from $0 to $1750, however those with no annual costs had per-

entry fees and some had both (Halverson). All totaled, the cost-per-animal calculations

based on the gathered data ranged from $2.91 to $10.51 (Halverson, 2008).

 The cost for RFID readers was not included in the calculations performed by

Halverson (2008). Reader cost was seen as a significant barrier by many providers, so

many chose not to implement them. This leaves the reading of the tags up to the unit

 16

where the animals are being transitioned, such as another producer, feed lot, or

slaughterhouse. The price of an RFID reader varies based on type and technology.

Wand type readers are cheaper than fixed panel readers, but require additional labor since

the wand has to be placed in close proximity to the tag on each animal. Over time, the

additional labor cost will outweigh the price differential between wand and panel readers

(NAIS, 2009). Panel readers are placed at fixed locations and read tags when they are

within range. These readers vary in reading range from a few inches to many feet. For

close proximity panel readers the animals must be placed in a head catch or run through a

chute in order to read the tags. Readers that have increased range do not require this and

therefore reduce the risk of injury and animal stress, which can lead to weight loss

(Halverson, 2008).

 To determine price premiums for RFID tagged cattle, Halverson used a sale

dataset that included over 29,000 lots totally over 3.25 million head of cattle. RFID

tagging was evaluated as a characteristic of the lot, similar to vaccination status, natural

vs. hormone, etc. To ascertain if RFID was a value-added characteristic, the marginal

physical product (MPP) multiplied by the unit price of the output (Po) is compared to the

cost of the input. A producer may pay for individual characteristics that increase MPP or

Po if the value of marginal product is greater than the cost of input (Halverson, 2008) The

price premium deduced from the dataset for RFID tagged cattle was $1.50 per 100

pounds. At an average sale weight of 500 lbs., the producer would see a net gain as long

as the total cost for RFID implementation was less than $7.50 per head. Halverson’s

research showed that, depending on current management style, many producers were able

to see net profit gains from implementing RFID animal identification.

 17

 Halverson’s dissertation also addressed the lack of standardization in RFID based

animal identification. In the US, the USDA is recommending the individual tracking of

livestock, but is remaining technology neutral (USDA, 2010b). This has resulted in many

different companies trying to make a profit by becoming a technology provider for

producers with no consistencies between them (Halverson, 2008). With standardization,

the use of RFID in animal identification will increase, and economies of scale will act to

lower equipment costs. The increased use of RFID will also begin to replace current

methods, thus lowering costs further (Halverson, 2008).

 Halverson’s calculations show that farms can see positive economic gains for

using RFID tracking systems, provided costs can be kept down. Thus, a need for a low-

cost system is truly present. LCTracker uses freely available and open source software

with generic hardware systems to reduce implementation costs. Software licensing costs

are eliminated completely, as LCTracker is offered to farms at no charge. By providing

RFID tracking, as well as increasing automation, LCTracker offers farms the opportunity

for financial gain.

 18

CHAPTER 3: TECHNOLOGY OVERVIEW

3.1 RFID Technology

 The fundamental technology behind this research is radio frequency

identification, or RFID. RFID is a wireless technology that uses radio frequency induced

electromagnetic signals to transfer a serial number from a tag to a reader (Domdouzis,

Kumar, & Anumba, 2007). The basic RFID system includes an antenna, a transceiver,

and a transponder. This system is typically connected to a computer or integrated device

that logs or takes action based on the reading.

 The antenna portion of an RFID implementation consists of a coil that transmits

radio signals in order to establish communication between the transceiver and

transponder (Domdouzis et al., 2007). The transceiver can then read and write data to the

transponder, also known as the tag. Antennas and transceivers are often packaged

together and are simply referred to as readers. RFID antennas operate at different

frequencies and must have appropriate tags and transceivers that operate in the same

frequency range. The most common commercially available frequency ranges are 125 –

135 kHz (low frequency), 13.56 MHz (high frequency), and 433 – 956 MHz (ultra-high

frequency) (Domdouzis et al., 2007).

 RFID tags consist of a radio antenna and a microchip. Passive tags receive their

power through the electromagnetic radio frequencies generated by the reader and

antenna. Since there is no other power source for passive tags, they can only operate

 19

when in range of an RFID reader. Once powered, the tag adds its serial number to the

signal that is sent to the reader. This process is referred to as passive backscatter (U.S.,

2005). The reader can then extract the serial number from the original signal. Active

tags have a built-in power source so that they do not have to be powered from the reader.

Instead of being idle until within range of a reader, active tags send out a beacon type of

signal. This allows the tag to be read from greater distances, as well as send additional

data from attached sensor devices (U.S. Department of Homeland Security Smart Border

Alliance [USDHS], 2005). While these are definite advantages, the price of this type of

tag makes them cost-prohibitive for most applications.

 RFID tags for animal tracking are manufactured in three main types. Boluses are

capsules that are ingested by an animal with multiple stomachs and remain in one of the

first two (Voulodimos et al., 2010). Injectable tags are small glass or plastic tubes

containing an RFID tag that are placed just under the skin of an animal. RFID ear tags

are just like standard livestock ear tags except they contain an RFID chip and antenna.

 RFID transceivers, or readers, generate the radio signals sent by the attached

antenna. They also receive responses from tags within range. The receiver is able to

decode the serial number and additional data sent by the tag and return it to a digital

format to be processed by the attached device. Receivers also have the functionality to

handle the anti-collision algorithms that allow them to read more than one tag at a time.

The attached device, be it embedded or a host computer, typically controls operation of

RFID readers.

 Each of the frequency ranges commonly used in RFID systems have different

attributes and uses. The low frequency (LF) band was used in early RFID

 20

implementations and is still in use today for animal tagging, access cards, and other close

proximity uses. The read range for these frequencies ranges from two inches to two feet.

Readers and tags that operate at the high frequency (HF) range are typically used for

smart cards and access control systems and operate within a range of three feet. Ultra-

high frequency (UHF) RFID equipment has the advantage of longer read distances, with

U.S. approved frequencies achieving distances up to 49 feet. UHF tags are commonly

used for entry/exit systems such as parking garages (USDHS, 2005).

 Our research explores the use of UHF readers and tags for use in animal

identification. Traditionally, LF radio frequency band RFID equipment has been used for

tracking and identifying livestock. The very short read range of LF tags inhibit the

options available for tracking and automation when managing animal lots. Substantial

labor is necessary when using wand readers to get within range of an LF tagged animal.

It also causes undue stress on the animal to place it in a head catch or force them single

file through a chute. By exploring the use of UHF RFID equipment, this research seeks

to take advantage of the increased read distances to reduce labor and increase automation

opportunities.

3.2 RFID Hardware

 We have selected the DL910 reader from Daily RFID co., Limited (2009). This

generation two UHF reader contains an integrated antenna in a sealed enclosure that

offers weather protection. The specifications for this reader list maximum read range at

26 – 49 feet, which allows for fewer readers required to cover a given area. This reader

can read multiple tags at a time and contains an RS-232 serial interface for

communication with another device. This unit was also chosen because it comes with a

 21

software development kit and sample code. This allows full control of the reader by an

external device.

 There are two main types of RFID readers. The DL910 reader is a panel type

reader. This type of reader is mounted at a fixed location and reads any tags within

range. Panel readers can typically be connected to multiple antennas for additional

coverage. Wand readers are portable units with integrated antennas that are placed in

close proximity to the single tag to be read. These readers require human control and can

connect to mobile computing devices or store the values for later retrieval.

 The RFID tags that were selected operate at the same UHF frequency as the

DL910 reader. Three type of tags were used for different attachment options. Wristband

tags can be attached and removed from necks or limbs of an animal for temporary

identification. Label tags can be affixed to existing tags, allowing quicker attachment.

Hard plastic tags are like standard ear tags and are made of sturdier construction.

 Many other types of RFID tags exist. The retail sector attempts to thwart

shoplifting by attaching RFID tags to their merchandise. These tags are deactivated at

the time of purchase. RFID panels are placed at store exits and sound an alarm when a

tag passes through them that is still active. Hospitals are also making use of RFID

technology by attaching ankle bands to newborn babies (Hospital, 2005). The unique

serial number of the tag is linked to the mother’s wristband to prevent a mix up and

readers at hospital exits detect the unauthorized removal of the infant.

3.3 Sun SPOTs

 A Sun Microsystems research project developed the Small Programmable Object

Technology (SPOT) device as a platform for diverse wireless device development (Sun,

 22

2010). Sun sells these in development kits with 2 free-range SPOTs and a base station

SPOT. The free-range SPOTs are mobile devices, while the base station connects to a

computer and establishes a wireless connection with other SPOTs. These small devices

contain ARM processors with on-board RAM and ROM storage. This gives them the

potential to not only collect and store data, but to process that data as well. The wireless

functionality is provided by an 802.15.4 radio and integrated antenna, which provides

approximately 328 feet of range. Because SPOT devices contain a microprocessor, they

provide for transmission hopping. Thus, data from a distant SPOT device can be

transferred along a series of in-range SPOTs to the base station. Each free-range SPOT

device includes a rechargeable 3.7V lithium-ion battery. Recharging is accomplished by

connecting the mini USB port to a powered host. Also stacked within the same enclosure

is a sensor board that is shipped in each free-range SPOT. This sensor board

demonstrates sensor integration possibilities and includes a 3-axis accelerometer,

temperature and light sensors, eight tri-color LED lights, six analog inputs, two

momentary switches, five general purpose I/O pins, and four high current output pins.

The high current output pins can drive external servos, motors, and control units. The I/O

pins can provide a serial interface between the SPOT and another device (Sun, 2010).

 The entire Sun Labs research project is available open source. The hardware

schematics and everything necessary to recreate the units are provided at no charge. The

virtual machine, as well as all demo and API software is also available under the GNU

General Public License. This gives the option of buying prebuilt units for rapid

prototyping and development, or using the open source hardware information to build

 23

production units specific to an application. Significant cost savings can be achieved by

using only the portions of the prebuilt units that are necessary for the particular use.

 Sun SPOTs employ the Java programming language exclusively. The software

loaded to the device completely controls the device, thus providing the developer with a

high degree of flexibility. SPOTs run the Squawk virtual machine (VM), a Java VM

written in Java that was developed to support micro-embedded development (Oracle,

2010b). Java programs written for the devices are compiled on a computer and then

deployed to the device via the Ant (Apache HTTP Server Project, 2010) build tool. This

can be done at the command line or through the NetBeans Java development

environment. NetBeans Plugins are available to assist in SPOT development, and

provide programming templates and automatic deployment functionality.

 We will employ Sun SPOTs to control and gather data from the RFID readers in

the field. The SPOTs will then transmit these data, possibly via transmission hops across

other SPOTs, to the base station unit attached to a PC. This remote data collection allows

for an increased number of automated reading stations without an increase in computers

or handheld reading devices, since the reader SPOT handles the data acquisition from the

reader as well. The frequency of RFID reader tag detection, as well as the frequency of

data transmission, is controlled by each individual SPOT and can be set independently to

allow for different use case scenarios.

3.4 MySQL

 MySQL is a relational database management system (RDBMS) that is a popular

storage solution for web application development. It provides the power and

dependability of many commercial RDBMS solutions, but is free to use under the GPL

 24

open source license agreement. MySQL is a key component as part of the AMP

(Apache, MySQL, PHP) software development stack and is available for many operating

system environments such as Microsoft Windows, Linux, and Mac. (Oracle, 2010a)

 The low cost automated livestock tracking system outlined in this research will

utilize the MySQL software for data storage. The location, timestamp, and any other

collected data about an individual animal is saved in this database. MySQL will also be

used to store all user-configurable, interface, and system settings. All of this data will be

delivered to the user interface that the farmer will use.

3.5 Apache

 The Apache http server is an open source web server supported by the Apache

Software Foundation (Apache HTTP Server Project, 2009). This freely available

software is responsible for serving almost 55% of the worlds web pages (Netcraft, 2010.).

Apache is available for multiple operating systems, including Microsoft Windows, Mac

OS, and Linux. Combining the Apache http server with the Linux operating system

creates a web hosting solution free of software licensing fees. The low cost automated

livestock tracking system developed during is written in PHP and utilizes the Apache http

server to host the system’s user interface.

3.6 PHP

 PHP is a web development scripting language that is embedded in HyperText

Markup Language (HTML) for creating dynamic web content (The PHP Group, 2010).

Utilizing the fundamental Internet language of HTML for displaying static content,

developers can leverage PHP to create interactive web pages. Content can be pulled from

other web sources or from databases. This connection to a database and its persistent

 25

storage is what makes the PHP language useful for creating user interfaces. The display,

interaction, and customization of the low cost automated livestock tracking system occurs

in a user interface built with PHP.

 26

CHAPTER 4: DESIGN

4.1 System Description

 LCTracker is the prototype low cost automated livestock tracking system

developed for this research as an alternative to current herd management options on the

market. Programs such as NAIS and its forthcoming replacement are pushing for farmers

to track their livestock. These programs are seen as an extra cost for the producer, with

little benefit for the average farmer. LCTracker is designed to meet the needs of a

national livestock tracking program, while also providing useful animal management

information as a benefit to farmers. All movement, feeding, and farmer-entered

information can be stored and linked to the unique ID for the animal. These data provide

movement patterns, which farmers can use to identify over and under-used areas. The

data also show feeding patterns that farmers can use to tailor their animal weight gain

strategies.

 The high level depiction of LCTracker in Figure 4.1 shows the main components

and how they interact. This diagram illustrates one sample configuration for tracking

cattle at a remote location. Field number one signifies a remote location where cattle are

monitored. A good example of this is a feed station. Each cow is tagged with an RFID

ear tag and is allowed to roam as they would normally. A UHF RFID reader is placed at

one end of the feed station, facing toward the food supply. This allows the reader to pick

 27

up all RFID tags within 49 feet of the reader. In doing so, cattle coming to the feed bin

are monitored.

 The RFID reader is connected to SPOT number one via an RS-232 serial cable.

The SPOT acts as a control unit. Determining the rate at which the reader detects tags

and stores all tag IDs that are read in the memory of the SPOT device. This data is then

broadcast wirelessly to all SPOTs that are in range. In the scenario of Figure 4.1, SPOT 2

is within range of the first spot and receives the data being sent. SPOT 2 and SPOT 3 in

the adjacent field are not connected to readers or computers and act as repeaters for the

data transmission to and from field one. Within range of one another, SPOT 2 receives

data from SPOT 1 and repeats this data to SPOT 3. This continues until the data is

received by the base station, SPOT 4, which is connected to a computer inside the barn or

home.

 The computer in the barn contains the system database as well as the graphical

user interface (GUI). The tag ID data received by SPOT 4 is stored in the database and

available for view in the GUI. The result of one read in the example shown in Figure 4.1

would be the ID storage of the three cattle at field one’s feed bin in the database on the

computer in the barn. This all happens automatically, without any human intervention.

 28

Figure 4.1. LCTracker example scenario.

4.2 LCTracker Setup

 Initial system setup at a new location requires a minimum set of components to

have a working product. There must be a computer at a location that has power and is

shielded from the weather. This workstation must have an AMP software stack installed

with running servers for Apache, MySQL, and PHP. Java must also be installed for the

operation of the connected SPOT, and a USB port must be available to plug it into. All

of the required software is available at no cost.

 29

 At least two SPOT devices must be also be present. One SPOT can act as the

base station and is connected to the workstation. The other SPOT is a self-powered free-

range SPOT that is connected to an RFID reader. In order for the system to operate with

just two SPOTs, they must be within wireless range (approximately 328 feet) of each

other. Care must also be taken for the SPOT connected to the reader so that it is

protected from the weather. Minimally, one RFID reader is required, as is one RFID tag

per animal. This reader must operate in the UHF frequency band and have an RS-232

connection for data transfer and control. A serial cable is necessary to connect the SPOT

to the reader. Power for the reader must be provided at this location, either from an A/C

outlet or via battery. As a part of this prototype LCTracker system, we have fashioned an

inexpensive acrylic panel enclosure to provide weather protection.

 In order to set up an LCTracker system, the installation steps in Figure 4.2 must

be followed. These steps show the process for initial installation, as many of the

components and steps are only required once. The system can be expanded from the base

installation by repeating steps 6, 7, and 8 in Figure 4.2. Figure 4.3 gives the steps for

installing a new reader.

 30

Figure 4.2. Initial installation and setup.

1. Tag livestock with RFID tags.
2. Install RFID reader at desired location. This install includes mounting the reader

and connecting it to a power source.
3. Install LCTracker software on reader SPOT.
4. Mount SPOT near reader and connect to it with a serial cable.
5. Place protective cover over SPOT if necessary.
6. Install LCTracker repeater software on free-range SPOTs.
7. Add repeater SPOTs every 100 yards or less, adding protective cover if necessary.
8. Install AMP stack, database, and interface to workstation computer.
9. Connect base station SPOT to computer.
10. Install LCTracker base station SPOT software.
11. Locate computer in shelter with A/C power available such that it is within 100

yards of the closest SPOT.
12. Start web and database servers, reader, and SPOT software.
13. Use GUI to set up run-time options and load areas, reader locations, and animal

information.
14. Once these steps are complete, the system functions automatically. Whenever

livestock come within range of the reader, the time and date of that location is
stored. Running histories for areas and animals are available in real time via the
system’s interface.

Figure 4.3. New RFID reader installation and setup.

1. Install RFID reader at desired location. This install includes mounting the reader
and connecting it to a power source.

2. Install software on reader SPOT.
3. Mount SPOT near reader and connect to it with a serial cable.
4. Place protective cover over SPOT if necessary.
5. Install repeater software on free-range SPOTs.
6. Add repeater SPOTs approximately every 100 yards to complete a connection to

an existing SPOT.

4.3 Hardware Features

 The hardware components that make up the LCTracker system were all selected

with cost, automation, and features in mind. Current commercial systems utilize RFID

hardware with capabilities that are now far below the capabilities provided by recent

advancements in equipment. The RFID reader and tags utilized in LCTracker operate at

UHF frequencies. This expands the maximum reading range from around three feet to 26

 31

– 49 feet. The short read range of LF panel readers require animals to be restrained or run

through a chute in order to read tags. While power can be attenuated in the UHF reader

to reduce reading range if necessary, the extended range allows for the use of unattended

panel readers in an open area. This increases convenience and automation opportunities,

as well as reducing labor costs.

 The evaluated commercial systems also use LF frequency animal tags. These tags

are similar to the tags used in LCTracker, with the main difference being their operating

frequency. To comply with NAIS, specific tags must be used. These tags have dedicated

ranges of serial numbers and are only sold by select providers. LCTracker makes use of

generic RFID tags available at a wide selection of outlets. NAIS compliance is provided

by the LCTracker system software, which maps tag serial numbers to NAIS issued

numbers. RFID tags can be ordered with specific serial numbers, so tags ordered must be

unique to an LCTracker implementation. With increased competition in the sale of

generic tags, cost savings can be seen by using them. Using generic tags also increases

the diversity of sizes and styles available, increasing the chance that the farm manager

can get the style they prefer.

 The Sun SPOTs utilized in LCTracker allow remote RFID readers to

communicate readings wirelessly to the base station computer. They operate

autonomously via a rechargeable lithium-ion battery and can be custom constructed for

specific needs. Reader SPOTs require full free-range SPOT capabilities, but repeater

nodes simply relay wireless data to in-range devices. Repeater SPOTs can either serve

other automation tasks or be built with only the components necessary for wireless

communication to save cost. Sun SPOTs are multipurpose devices, supporting the

 32

control of other systems beyond RFID readers. Thus, extensions could have SPOTs

opening/closing gates, turning on/off water supplies, etc.

 Each hardware component used in LCTracker was designed for modularity. For

instance, the RFID reader can be replaced with another type of identification method

while the rest of the system remains intact. SPOTs were chosen for interfacing and

networking, but could be replaced by ZigBee or Arduino mobile devices that are

functionally equivalent. Modular components allow an LCTracker implementation to be

custom built for specific purposes while using the same system design.

4.4 Graphical User Interface

 The GUI for the LCTracker system provides the end user with the ability to

control read rates, as well as search for particular animal IDs in the system. It was

designed as a dynamic website so that it can run locally on the base station or be hosted

and accessed from any machine with Internet access. This interface provides the most

recent tracking data for livestock, as well as the ability to search for particular livestock

and view their location history. Information specific to each animal can be entered and

tied to the RFID tag used on it. Farm information, RFID locations, and areas can all be

defined within the GUI.

 The GUI also provides a setup section. This section has elements such as RFID

locations that are required at initial installation, as well as other settings useful to the

farmer. The farmer can set read timings for each particular reader so that they are

appropriate for the intended location. A reader inside a barn may not need to take

readings as often as one at a gate, so those adjustments can be made in the interface and

disseminated to the readers. Notifications can also be set so that the farmer is alerted

 33

about specific situations. Examples of these notifications are when an animal hasn’t been

picked up by any of the readers in a set amount of time or when an animal hasn’t been to

the feed bin in a certain time period.

 Built as a dynamic website, the user interface can be run locally on the base

station PC or delivered by a website hosting company. Running the interface from the

base station allows the system to function without an Internet connection, and is free.

Backing up the database requires external data storage, and must either be done manually

or programmed into the GUI. Website hosts typically charge a small fee and a

connection to the Internet is required, but they typically provide support and automatic

backup options as incentives.

 34

CHAPTER 5: IMPLEMENTATION

5.1 LCTracker

 The current implementation of LCTracker is a proof of concept prototype,

showing the feasibility of a low cost automated livestock tracking system. The design

described in the previous chapter was followed as closely as possible, while some

concessions were made with consideration to cost, availability, and functionality. This

prototype shows that the LCTracker design can be the basis for a viable cost effective

solution.

 35

Figure 5.1. LCTracker Implementation Design.

 Figure 5.1 shows a slight change made in the prototype. Functionally, this system

still operates in the same way as the design of Figure 4.1. Tagged animals in field 1 are

detected by the reader and stored there until their information is broadcast via SPOT 1.

This data is then relayed to SPOT 2 and three and eventually to SPOT 4 that is connected

to PC 2 in the barn. The only hardware difference in this design is the addition of PC 1 at

the location of the RFID reader. This PC controls the reader, sets read timing, and

collects the read information. SPOT 1 still performs the wireless transmission duties it

 36

did in Figure 4.1. This modification was necessary due to insufficient documentation and

support for controlling the reader device.

5.2 RFID Hardware

5.2.1 RFID Reader

 The RFID hardware chosen for this implementation comes from DAILY RFID

CO.,LIMITED. This company was selected for their product offerings and pricing.

RFID reader model DL910 listed specifications that best suited the LCTracker

application. This reader contains an integrated antenna and is weather sealed for exterior

use. It has the ability to read multiple tags at once and has a maximum read distance of 8

to 49 feet, depending on the tags used and surrounding environment (Daily RFID,

Limited, 2009). Choosing an integrated reader and antenna not only allows for a sealed

and mountable unit, but it also reduces the cost over comparable separate units that

provide similar performance. This reader has multiple connections for interfacing,

including the RS-232 serial interconnect needed for LCTracker. An API with sample

code is provided for interfacing with the unit.

 The API included with the DL910 reader has an unadvertised feature of only

working in a Microsoft Windows environment. In addition, the low-level

communications code is not provided. This caused difficulty since either command

codes or a Java based API are required for the SPOT to control the reader. The command

codes provided in the DL910 documentation unfortunately are incomplete. To continue

with prototype development, an intermediate C#.NET device was inserted to interface

with the reader. This is shown as PC 1 in Figure 5.1. On this device, an intermediate

software program was written in C# that is able to utilize the provided Windows API to

 37

communicate with the reader. This application requests the reader to read and then writes

to a MySQL database on the same PC as temporary storage for the read ID information.

SPOT 1 is also connected to this intermediate PC and can read the ID data from this

temporary storage and disseminate to subsequent SPOTs accordingly. As a proof of

concept, this modified arrangement is fuctionally the same as the original design, but

necessitates the addition of a second PC to communicate with the reader. This issue can

be resolved in two ways. One, if the DL910 communication protocol is revealed then the

reader SPOT software can be updated to control the reader directly itself. Two, an

alternative RFID reader that offers a Java based software development kit can be

employed.

 Figure 5.2 shows a portion of the C# driver application for connecting to,

disconnecting from, and reading data from the DL910 RFID reader. The OpenReader

method establishes the initial connection to the reader based on the type and address of

the connection. In this case, the communication takes place over a serial connection

connected to COM port 1. Once connected, the internal station and connection speed is

established. A connection rate of 19,200 baud was selected to provide sufficient speed

while remaining low enough to reduce interference and cable length restrictions.

 38

Figure 5.2. Windows RFID API Usage.

5.2.2 RFID Tags

 The RFID tags that were utilized also came from Daily RFID Co., Limited.

These tags operate at the same UHF frequency as the DL910 reader. Three types of tags

 private void buttonConnect_Click(object sender, EventArgs e)
 ret = Demo.ReaderDll.OpenReader(ref m_hCom, linktype, com_port);
 if (ret == 0)
 {
 …
 Demo.ReaderDll.SelectStation(m_nSite);
 …
 ret = Demo.ReaderDll.SetBaudRate(m_hCom, nBaud);
 …
 strState3 = "Connection to " + strComm + " Established.";
 }
 else
 {
 strState3 = "Connection to " + strComm + " Failed!";
 }

 this.labelStatus.Text = strState3;
 }

 private void buttonDisconnect_Click(object sender, EventArgs e)
 {
 if (m_bConnect == true)
 {
 Demo.ReaderDll.ResetReader(m_hCom);
 Demo.ReaderDll.CloseReader(m_hCom);
 …
 this.labelStatus.Text = "Disconnected";
 }

 }

 private void buttonRead_Click(object sender, EventArgs e)
 {
 ret = Demo.ReaderDll.MultipleTagIdentify(m_hCom, nTagType, ref nCount, id);
 for (int rd = 0; rd < nCount; rd++)
 {
 for (int rdi = 0; rdi < 14; rdi++)
 {
 textBoxData.Text += id[(rd * 14) + rdi].ToString("X2");
 readID += id[(rd * 14) + rdi].ToString("X2");
 }
 textBoxData.Text += Environment.NewLine;
 …
 }

 39

were tested: labels, wristbands, and rigid plastic tags. The label tags, shown in Figure

5.3, are coated paper tags with adhesive on one side. If animals are acquired with

existing ear tags, these tags can be applied over them. This saves the time and labor in

removing the old tag and applying a new one, as well as providing cost savings over

buying new RFID tags and discarding the old ones. The wristband tags can be attached

to the leg or neck of an animal, depending on size. This type of tag is good for temporary

attachment and can be moved from one animal to another. If animals are never tracked

after leaving the premises, this allows for the reuse of tags. Since wristband and label

style tags are sized similarly to the average animal ear tag, read performance is

comparable. Figure 5.4 shows one example of a wristband style tag. The final type of

tag used was a rigid plastic tag similar in construction to a display type ear tag. This type

of tag is displayed in Figure 5.5. The UHF frequency that these tags use is an established

standard, with multiple tag types available at many different RFID vendors.

Figure 5.3. RFID Tag Labels.

Figure 5.4. RFID Tag Wristbands.

40

RFID Tag Labels.

RFID Tag Wristbands.

 41

Figure 5.5. Rigid Plastic Tag.

5.3 SPOT Communication

 SPOTs from Sun Microsystems were chosen due to their wireless capabilities as

well as their ability to function as a microcomputer and control other systems. These

devices can be programmed in Java and can interface with a multitude of external

systems. SPOTs have a serial interface that can provide RS-232 connections to external

hardware. They also contain processor and memory subsystems to be able to handle

computations based on input data and take appropriate action based upon it. This allows

each sunspot to provide automation to a multitude of farm functions. This expandability

was a main incentive for choosing this technology.

 42

 Another reason for choosing Sun SPOT systems is the modularity inherent in their

design. These hardware pieces can be built from scratch from open source hardware

diagrams, and can be customized to the task at hand. If only a portion of the available

capabilities are needed, then that is all that needs to be built. This provides the option of

buying complete kits from Sun Microsystems, or building custom hardware specific to

the duty assigned to a specific SPOT. This can provide significant cost savings when the

full functionality of a prebuilt SPOT is not needed.

 For the LCTracker system, there are three different roles played by the SPOT

devices: reader SPOT, repeater SPOT, and base station SPOT. Referring to Figure 5.1,

SPOT 1 is a reader SPOT, SPOT 4 is a base station and SPOT 2 and SPOT 3 act as

repeaters. Repeater SPOTs only require the battery, radio, and proccssor components.

Repeaters will also typically require weatherproof mounting. The base station SPOT

does not even require a battery since it connects to a PC. The reader SPOT is the most

complicated. In the design of Chapter 4, these SPOTs require a battery, processor board,

weatherproof housing, an RS-232 communication cable, and an eDemo board. In the

prototype LCTracker system, the battery is not required since it is connected to the extra

computer.

 Figure 5.6 is a code listing showing examples of the Java code necessary for

controlling an RFID reader such as the DL910 via a byte code instruction set. These

instructions are provided in communications protocol document available in the SDK.

However, the initial communication instruction is missing from this document. This

would provide the functionality of the OpenReader command in Figure 5.2. While

utilizing the C# reader application enabled this proof of concept implementation to be

 43

completed and evaluated, the SPOT controlled reader application was still tested. Since

communication with the reader wasn’t possible without the missing instruction, SPOT 1

from Figure 5.1 was connected to the serial port of a PC running a serial port monitoring

program called portmon. By logging the serial output of the SPOT, the correct

instructions were confirmed. Adding the missing initial connection instruction should

complete the SPOT to RFID reader interface, allowing the removal of the extra PC. The

next methods in Figure 5.6 initiate the serial interface on the eDemo board. The byte

code instructions are written to the serial port, and read method will block until a

predefined timeout occurs.

Figure 5.6. Java RFID Reader Driver Code Listing.

5.4 MySQL Database

5.4.1 Database Design

 The LCTracker system implementation utilizes two databases. One database is

used for temporary storage of the tags read by an RFID reader and the other is the main

storage for all tracking and setup information. The temporary storage database resides on

byte[] setBaudRate = {(byte)0xA5, (byte)0x00, (byte)0x03, (byte)0x74, (byte)0x01, (byte)0xE3};
byte[] resetReader = {(byte)0xA5, (byte)0x00, (byte)0x02, (byte)0x75, (byte)0xE4};
byte[] setPower = {(byte)0xA5, (byte)0x00, (byte)0x03, (byte)0x7F, (byte)0x00, (byte)0xD9};
byte[] multiIdentify = {(byte)0xA5, (byte)0x00, (byte)0x03, (byte)0x93, (byte)0x04, (byte)0xC1};

EDemoBoard demo = EDemoBoard.getInstance();

demo.initUART(EDemoBoard.SERIAL_SPEED_19200,
 EDemoBoard.SERIAL_DATABITS_8,
 EDemoBoard.SERIAL_PARITY_NONE,
 EDemoBoard.SERIAL_STOPBITS_1);

demo.writeUART(setBaudRate);
demo.writeUART(multiIdentify);
returnData = demo.readUART();
demo.writeUART(resetReader);

 44

PC 1 in Figure 5.1 and is part of the additional requirements to complete this prototype

without a SPOT compatible reader. It is not needed for implementations with a SPOT

controlled reader. The database is called tmpStore and contains only one table,

tmpLocation. As shown in Figure 5.7, this table contains the minimal information

necessary to track animal tag identifications. Only basic information such as the animal’s

RFID number, date stamp, and which reader in a particular area picked up the tag is

necessary. This is because the basic key information can join the main tables at the base

station PC to retrieve or store all data linked to the animal (e.g., it’s weight, etc.).

Figure 5.7. tmpStore Database.

 The main system database shown in Figure 5.8 contains the core components of

the LCTracker system. The initial setup of the system requires entering information

about the farm itself. Different areas of the farm can be defined, and each area can

contain multiple readers. Each of these tables can be added to on the fly with the

acquisition of new land or restructuring of old. Animal information can be entered once

and retrieved later via a single key. Animal keys can be one of three different identifiers.

The animal_id in the animal table contains the RFID tag number attached to it, while the

animal_easy_id is a unique number for that animal that is easier for a farm worker to

remember and identify. These numbers are often displayed or written on the RFID tag

itself, allowing both visual and electronic identification. The animal_national_id column

 45

is for storing the ID number registered with the USDA. While not needed in daily use of

LCTracker, this ID can reference any animal in the system if needed. It can also be

transferred with the animal to maintain tracking information until time of slaughter.

Figure 5.8. lctracker Database.

5.4.2 Database Connections

 Connections to a MySQL database occur at the reader and at the base station PC.

Figure 5.9 demonstrates how the MySQL connection is established in C# for the

temporary storage of IDs collected from the reader by the intermediate PC-1. The

MySqlClient connector is used to connect with the database and takes a connection string

 46

with server, database, userid, and password. Once connected a MySqlCommand is

created. This structure houses storage for the command itself, as well as execution

methods.

Figure 5.9. C# MySQL Connection.

 Figure 5.10 shows how SPOTs access the MySQL database. SPOT 1 reads from

the database, while SPOT 4 writes to the database during standard operating behavior.

However, SPOT 1 and SPOT 4 can perform both duties when settings from the GUI have

to be transferred to the remote readers. Once the appropriate Structured Query Language

(SQL) packages are loaded, the Java Database Connectivity (JDBC) driver class is

referenced. This allows a connection to be established with the provided location,

username, and password. After preparing an SQL statement, the query is executed

against the database and stored in a result set. This result set is then looped over,

accessing values via column number indexing.

using MySql.Data.MySqlClient;

string MyConString = "SERVER=localhost;" +
 "DATABASE=tmpStore;" +
 "UID=userid;" +
 "PASSWORD=password;";
MySqlConnection connection = new MySqlConnection(MyConString);
MySqlCommand command = connection.CreateCommand();

connection.Open();

 command.CommandText = "insert into tmpLocation values ('" + readID +
"', NOW(), '3')";
 command.ExecuteNonQuery();

 connection.Close();

 47

Figure 5.10. Java MySQL Connection.

 The final database connection is made by the user interface. This dynamic web

page is written in PHP and connects to the MySQL database running on the same

workstation. As seen in Figure 5.11, the connection process in PHP is similar to the other

methods covered. All connection variables are defined and then a connect function is

called that returns a handle for that connection. Then the database is selected and the

query is written. The query is executed and fetched one row at a time. A loop fetches

rows and displays the information until no more rows exist, at which time the query is

released from memory. This dynamic display of database information allows the GUI to

reflect tracking changes in real time, requiring only a refresh of the page.

import java.sql.*;

String readRecord;

Class.forName("com.mysql.jdbc.Driver");
java.sql.Connection con = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/tmpStore", "USERNAME", "PASSWORD");
PreparedStatement statement = con.prepareStatement(
 "select * from tmplocation");
ResultSet result = statement.executeQuery();

while(result.next()) {
 readRecord = result.getString(1) + " " +
 result.getString(2) + " " + result.getString(3);
 System.out.println("readRecord = " + readRecord);
}

 48

Figure 5.11. PHP MySQL Connection.

$hostname_lenovo = "MACHINE_ADDRESS";
$database_lenovo = "lctracker";
$username_lenovo = "USERNAME";
$password_lenovo = "PASSWORD";
$lenovo = mysql_pconnect($hostname_lenovo, $username_lenovo, $password_lenovo) or
 trigger_error(mysql_error(),E_USER_ERROR);

mysql_select_db($database_lenovo, $lenovo);
$query_animalData = "SELECT * FROM location, animal WHERE location_id = animal_id
 ORDER BY location_date";
$animalData = mysql_query($query_animalData, $lenovo) or die(mysql_error());
$row_animalData = mysql_fetch_assoc($animalData);

<?php do { ?>
 data.setCell(<?php echo $rowNum ?>, 0, <?php echo $row_animalData['location_easy_id']; ?>);
 data.setCell(<?php echo $rowNum ?>, 1, '<?php echo $row_animalData['location_date']; ?>');
 data.setCell(<?php echo $rowNum ?>, 2, '<?php echo $row_animalData['location_area']; ?>');
 data.setCell(<?php echo $rowNum ?>, 3, '<?php echo $row_animalData['animal_type']; ?>');
 data.setCell(<?php echo $rowNum ?>, 4, '<?php echo $row_animalData['animal_sex']; ?>');
 data.setCell(<?php echo $rowNum ?>, 5, '<?php echo $row_animalData['animal_start_date']; ?>');
 <?php $rowNum++; ?>
<?php } while ($row_animalData = mysql_fetch_assoc($animalData)); ?>

<?php
 mysql_free_result($animalData);
?>

 49

CHAPTER 6: EVALUATION

6.1 RFID Hardware

 The RFID hardware used in the implementation was chosen for its listed

specifications and cost. To evaluate the hardware itself, it was placed in real world

situations to compare advertised performance with performance in the field. The

supplied software and documentation were assessed for their completeness and clarity,

while vendor communication and support were examined. These evaluations ultimately

led to a determination of the appropriateness of this hardware for the LCTracker

application.

6.1.1 Reader and Tag Performance

 Three different types of tags were used in these tests, labels, wristbands, and rigid

tags. The label tags were easy to remove from their packaging and contained sufficient

adhesive to properly secure them to a rigid surface such as existing ear tags. These tags

measure 2 inches by 6 inches on the exterior, but the actual tag circuitry inside is only

about three fourths of an inch by three inches. Rigid plastic tags attach the circuitry to

hard plastic like the majority of large animal ear tags that are available. These tags

measure 1 inch by 5 inches, with the RFID circuitry measuring .75 inches by 4.5 inches.

The wristband tags can be removed and reattached due their soft plastic housing and

contain a 1 inch by 3 inch RFID tag.

 50

 The first parameter evaluated was maximum read distance. This is the furthest

separation a tag can have from the reader and still return the signal. The advertised

maximum read range for the DL910 reader 26 to 49 feet, depending on the type of tag

being read. Table 6.1 lists the maximum read ranges that resulted from this evaluation.

With a maximum read distance for any tag of 30 feet, these read ranges fell into the

bottom end of the manufacturer claims. Wristband and label tags fell even shorter of the

goal, not reaching the claimed read distances. Given that the rigid type of tag most

closely represents the average hard plastic animal ear tag, its maximum read range is still

within the specifications of the LCTracker system.

Table 6.1

Maximum read distances

 Rigid Tag (ft.) Wristband Tag (ft.) Label Tag (ft.)

Open Air 30 21 19

Wood Door 25 17 15

Wood + Sheetrock 25 17 15

12” Cinder Block 6 4 4

Steel 0 0 0

 Table 6.1 also shoes the maximum distances for tag readings to pass and return

through different mediums. With many barns and other agricultural buildings being

made of wood, the solid wood door test shows how much read distance is lost when a

wooden structure lies between the animal and reader. With drops in distance of around

20% or less, wood causes a minimal range decrease. Not only does this mean that

 51

livestock would have to be closer to the reader in order to be tracked, but it also means

that animals inside and outside of a wood barn may be picked up. As each LCTracker

installation is unique, this must be accounted for when placing the reader.

 While the addition of sheetrock did not have an effect on RFID readings, they

changed significantly with the change of obstruction material to cinder blocks. With read

distances dropping an average of 78%, block structures significantly reduce the chance of

identifying livestock through them. Again this fact has to be accounted for in reader

installations. This may require additional readers on the opposite side of the wall, but it

also gives the ability to restrict readings within the structure. Only animals immediately

adjacent to the opposite side of the wall have a chance to be identified. As Table 6.1

indicates, steel can be used to completely impede RFID tag identification. This was the

only medium in the evaluation to do so.

 Since tagged livestock can move freely, the angle of the tag to the reader is

always changing. As there is no front or back of an RFID tag, read angles were read

based on the tag being perpendicular to the radio frequencies emitted by the reader. The

rigid tag performed the best, triggering reads at all angles. Wristband tags produced

reads up to 80 degrees from perpendicular, while label tags stopped reading at 65

degrees. As with the other tests of tag functionality, the rigid plastic tags performed the

best. Wristband tags would cause reads with most any movement, but label tags had a

large angle window where no readings took place. With the higher rate of missed

readings, label tags are not suggested for use in the LCTracker system.

 The final evaluation tests for the RFID hardware determined how far apart each

tag must be and how many can be read at a time. All three types of tags functioned

 52

similarly in the spacing tests. The only condition that caused misreads was two RFID tag

antennas touching the ends of each other. This situation generated an average 12%

failure rate over 20 reads. Overlapping tags that were not touching were still readable.

Since tag antenna ends touching each other when on an animals ear is unlikely and would

only be a temporary situation it is not seen as a significant issue. The DL910 reader does

not have a listed maximum for number of tags read at a given time. It will attempt to

read every tag that is energized by the antenna. Without the volume of tags to explore

this upper ceiling, smaller tests were completed. It was found that at least seven tags in a

one square foot area could be read simultaneously. Concentrations that high are virtually

impossible when in use on the farm, so the number of tags read at a time was determined

to not be an issue. Due to tag angle, proximity, barriers, and other external factors, every

tag was not read every time. This shows the need for multiple reads, disregarding

duplicates.

6.1.2 Reader Interface

 The DL910 reader advertises interface connections for RS-232, RS-485,

Weigand, and TCP/IP ports. The RS-232 connection was used and evaluated with

LCTracker. This type of connection is an industry standard, but is commonly considered

a legacy interface. It does not provide the speed and ease of use of more modern

connection methods, but is more than adequate for use in this system. The RS-232

connections with a PC worked as advertised.

 The SDK supplied with this reader caused most of the difficulty in setting up a

proof of concept implementation identical to the initial design. SPOTs require a platform

independent Java interface, and the DL910’s APIs are Microsoft Windows only. A

 53

communications protocol was provided, but was missing the initial connection instruction

codes. This prevented the SPOT from controlling the reader, and required the extra PC

show in Figure 5.1. While the actual function of the system was not compromised, this

extra hardware increases cost and complication. It should be noted that the SDK is not

advertised as Windows only, but is not promoted to be platform independent either.

RFID reader options do exist for platform independent Java interfacing, and should be

utilized for future LCTracker implementations.

6.2 SPOT Hardware

 The SPOT mobile devices that were utilized in the implementation are advertised

to be self-powered wireless development devices. In the LCTracker system, they are

utilized for wireless data transmission, RFID reader control, and database access.

 Serving as wireless transmitters to connect RFID readers and a base station PC,

the SPOTs performed as advertised when within range. Built-in error checking ensured

that data sent was received and persistent connections were sustained. However, the

publicized maximum communication of 328 feet was not obtained in the LCTracker

prototype evaluation. To test actual radio range, two programs were written. One SPOT

was programmed to periodically broadcast a transmission, and the other was programmed

to receive transmissions. Radio strength settings were set to maximum, and one of the

internal LED lights of the receiving device was set to blink when it was able read the

transmission. In this setup, the light will quit blinking when it is out of range.

 The radio range can be affected by external conditions and placement angle.

Outside, with no obstructions, a maximum distance of 57 feet was reached before signal

failure occurred. This distance was even less if obstructions came between the antennas.

 54

The maximum range indoors was 87 feet, still far short of the claimed value. This range

shortfall compromises the LCTracker design, remaining useful for short-range wireless

transmission only. An RFID reader could be placed outside of a barn, for instance,

without running wires. However, connecting to distant fields would require too many

repeater spots to be cost effective.

 Rage tests were also conducted with clear acrylic enclosures sealing the SPOTs

from the weather. This weather sealing is required to protect any spot subjected to

moisture. Since maximum range can vary slightly from test to test, three samples were

taken without the protective enclosure and three with. The averages for these tests show

no appreciable loss of range from this thin clear box.

6.3 Cost

 One of the main hurdles that the USDA saw with the acceptance of their NAIS

program was the cost incurred by the livestock producers (Jeffries, 2006). Since price

was a prohibiting factor, a major goal of the LCTracker system was cost. Every step in

the design evaluated cost vs. features for that particular function. To evaluate the

performance of LCTracker in the respect, pricing for tracking systems was divided

between software and hardware.

6.3.1 Hardware Costs

 Table 2.4 showed RFID hardware costs for the equipment popular with

commercial tracking systems in use today. Allflex and Destron RFID systems are

specialized for livestock identification, therefore limiting their market. The hardware

utilized in LCTracker not only uses different radio frequencies to increase performance,

but is also less specialized in function. This drives down the cost of the equipment.

 55

Table 6.2 shows the costs for panel readers from two manufacturers. Daily RFID Co.,

Limited produces the DL910 reader used in the implementation. This reader provides the

necessary specifications for frequency and range, but lacked the platform independent

API necessary to complete an LCTracker installation without an extra PC. While slightly

more expensive, the Alien reader model 9650 offers similar performance and has the

necessary Java API to enable SPOT control of the reader. It should be noted that

shipping prices significantly affect total purchase price. The lowest shipping option for

the Alien reader is around $10. The lowest option for the Daily product is $147, bringing

the actual cost difference to around $130.

Table 6.2

Implementation RFID hardware costs

 Daily Alien

Panel Reader/Antenna $510 $778

Tags $0.90 - $3.00 $2.00 - $5.00

 RFID tag prices, as seen in Table 6.2, can vary depending on type and quantity

purchased. The actual RFID components inside a tag are quite inexpensive, and only

make up a small portion of tag costs. Alien produces RFID inlays that are available for

less than $0.30 when bought in quantities of 500 or more. These inlays must be placed in

the chosen tag medium, such as an ear tag. Small farms may be unwilling to invest in the

10,000 or more quantity of tags to get the best pricing. Orders of as little as 250 are

available for around $2.00 per animal.

 56

 SPOT technology by Sun Microsystems is only sold in development kits at this

time. Each development kit contains two free-range SPOTs, one base station SPOT,

development tools, a USB cable to connect to a PC, and quick-attach mounts. The base

kit provides the equipment necessary to create two RFID reader installations at up to 200

yards from the base workstation. SPOT to SPOT communication is limited to a

maximum of 100 yards1, but automatic transmission hopping will allow any spot to

communicate with any other spot as long as a network of connected SPOTs exists

between them.

 SPOTs are connected to RFID readers via an RS-232 serial connection. To make

this connection, a 9-pin serial cable is required. These cables can be obtained from

reputable retailers for as little as $2, as shown in Table 6.3. One cable is required for

each reader that is used. The SPOT to PC connection is made via a USB cable that is

provided in the development kit.

 The protective housing item in Table 6.3 is necessary when mounting a SPOT

where it will be vulnerable to the weather. Clear acrylic boxes suitable for this purpose

can be found for as little as $3. If custom enclosures are desired, large sheets of acrylic

can be cut and assembled with silicone caulk. These sheets are available for around $20

for two feet by four feet sections.

Table 6.3

SPOT Hardware Costs

 SPOT Dev Kit Serial Cable Protective Housing

Price $399 $2 $3

1 Refer to Section 6.2 for wireless

 57

6.3.2 Software Cost

 The software components of the LCTracker system generate a large cost savings

over commercial systems. Freely available open source software was used for the system

interface and all source code of the software created for the proof of concept

implementation is available. The cheapest commercial system reviewed costs at least

$245 to be able to track an unlimited number of livestock. This minimum savings of

$245 can grow much higher with version upgrades, multi-user licenses, and the addition

of wireless support. Some of the features of LCTracker are either not available, or only

available as add-ons at an extra cost.

 The LCTracker software also saves on hardware costs. Government tracking

systems such as NAIS and its forthcoming successor require a unique ID for all livestock.

In previous systems, this meant the purchase of specialty RFID tags with a specific

number range. LCTracker enables the use of any RFID tag by coupling the actual tag

number with the government provided number in the database. A lookup by either

number is specific to a single animal. This also broadens the type of tag available for

use.

 58

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Conclusion

 Livestock tracking is a common and valuable practice. Modern tracking involves

the use of semi-automated techniques such as barcodes or RFID tags. The USDA has

proposed and is revising a policy for livestock tracking, particularly for disease

management and traceability. Many consumers are requesting knowledge of animal

product lifecycle. While larger livestock operations may be able to afford the costs of

current commercial livestock tracking systems, there is a need for a low cost livestock

tracking system.

 This thesis describes the design and prototype implementation of the LCTracker

low cost livestock tracking system. Wide-area, panel-style RFID readers can be

positioned at critical livestock locations, such as feed stations, water stations, gates,

barns, etc. Smart devices can control these readers and transmit RFID tag readings via

wireless radio signals. Repeating devices are smart devices that can inexpensively

propagate readings from distant readers to a base station. The base station is a wireless

receiving device attached to a computer and typically located in a barn or house.

Readings reaching the base station can be stored locally in the LCTracker database or

communicated to an offsite LCTracker hosted database via Internet connection. The

offsite feature means that farmers do not have to maintain the computer system and

perform data backups.

 59

 The LCTracker prototype implementation used a low-cost panel RFID with Sun

SPOT devices as the controller, repeater, and base station devices. All components could

easily be replaced with other hardware that provides equivalent functionality. The thesis

also evaluates the prototype for cost and performance. The cost is low, primarily due to

the exclusive use of open-source software. Reading and wireless transmission ranges

were found to be lower than specified by the manufacturers.

7.2 Future Work

 The implementation of LCTracker proved that such a system can be created and

could be a cost effective solution to more expensive commercial systems. As with any

system, however, a continued refinement is necessary to create a polished end product.

7.2.1 RFID Reader Controller

 The main future work for SPOTs and RFID readers in the LCTracker system is

the complete operation of a reader by the SPOT. Having the extra PC requirement, as is

shown in Figure 5.1 compared to Figure 4.1, increases complexity and cost significantly.

The SPOT hardware was specifically chosen because it has the components necessary to

control the reader without the assistance of a PC. This can be resolved by using a Java

API enabled RFID reader, such as the Alien 9650. Removing the extra PC also removes

the tmpStore MySQL database from the system design. The connected device receives

the read tag ID information directly and can disseminate accordingly.

 The SPOT’s role as a reader controller is enabled by their processing and external

device integration abilities. SPOTs can be replaced in this role with similar products

capable of performing the same function. Small, low-power devices based on the ZigBee

protocol could be used, as well as mobile Arduino devices. ZigBee devices run on the

 60

same 802.15.4 radio standard as SPOTs and many device options exist (ZigBee, 2010).

Arduino devices are open source, and can be custom built for a specific task (Arduino,

2010). Cost and performance evaluations would determine the best option for this task.

7.2.2 Repeaters

 The current task for repeater SPOTs is simply to relay wireless data in route to a

specific destination through any SPOTs in range. In the expansion of this system, these

SPOTs can provide additional functionality. To handle the possibility of data loss when

the destination cannot be reached, a store and forward technique can be implemented.

When the destination SPOT is unreachable, the data is stored on the device for later

transmission when the original is back online. This would increase the fault and delay

tolerance of the network, allowing it to handle a dead battery or other SPOT disruption.

 To avoid the disruption possibility of a dead SPOT battery, battery monitoring

could be built into the system. SPOTs can check their own power level, which could be

reported and monitored in the system interface. Alerts could notify farmers when battery

levels are getting low so that they can be recharged before a failure occurs. The ability to

periodically check their power level and report back to the base station could be built into

every free-range spot in use.

 Similar to periodic battery level checks, a system integrity check could alert

system operators about problems before they occur. This would be a recurring system

check ensuring that every SPOT in the network was reachable. If a SPOT is not

reachable, notifications could be presented in the user interface. These can be initiated

from an otherwise idle repeater spot, making use of all available hardware.

 61

 Full free-range SPOTs have the ability to do much more than is required to repeat

a wireless signal. These devices can control other systems such as servos and motors

while still repeating wireless traffic. However, if the extra capabilities of a SPOT are not

needed for a repeater node, custom built SPOTs with only the required components could

be built. If other wireless devices are used to control the reader, then they could also

relay a data transmission to nearby devices.

7.2.3 LCTracker System Software

 There are many expansion opportunities for the user interface of LCTracker. This

software could offer the ability to set up automated integrity checking, as well on-demand

checks when a problem is suspected. Additional system settings in the interface could

allow for system adjustment from one location. Providing adjustments such as read and

wireless transmission frequencies, as well as putting all or parts of the system asleep from

within the user interface allows for remote management opportunities.

 Reporting options could also be added to the system software. NAIS compliance,

daily activity, movement, and feeding reports would provide farmers with data

collections that would require hours to compile individually. Custom fields and reports

would allow the farmer to dictate the exact information they wanted assembled and how

it is presented.

 Another area of expansion for the user interface is notifications. The end user

would determine the best method or methods for receiving them, and enter those into the

system. PCs with an Internet connection can automatically send emails and texts, but

notifications can also be presented within the interface. Livestock that haven’t been to a

feed bin in a set amount of time can signal a problem, so the notification setup would

 62

allow the farmer to set the amount of time and notification means for this issue. Farmers

could also be notified when there are too many animals in an area, or when an animal

hasn’t been located by a reader in an established period of time. This type of data can be

presented in a report, but is more time sensitive in nature. Being proactively notified by

the system frees the user from having to constantly run this type of report, knowing they

will be alerted about urgent situations.

 All data for the LCTracker system reside in a MySQL database. This database

can either be located on the base station PC or stored by a hosting provider. If the

database is stored locally, a method for data backup is needed. This can be as simple and

cost effective as an external USB key or hard drive. These are available as low as $50 in

sizes large enough to store all the data for a moderate sized farm. Options built into the

system software could provide one-touch backups or restores from these external storage

devices. If the database is hosted, these companies typically offer backup as part of the

service price. Online backup sites are another option for either setup. There are many

options available that offer as much as 50GB of storage, adding no cost to an LCTracker

implementation. Integration with these backup solutions should be easy for a layman to

setup, with scheduling them automatically being ideal.

7.2.4 Additional Automation Possibilities

 There are many possibilities for increasing automation in the current system. One

such method is to utilize the processing and interfacing abilities of Sun SPOTs. Free-

range SPOTs contain their own temperature, light, and gyroscopic sensors, and can

interface with many other types of external devices via onboard I/O ports. The automatic

 63

collection of data from these subsystems can be stored and can trigger other actions

within the system.

 Since SPOTs contain a photo sensor, controls can be activated based on available

light, such as motors that open or close gates at dawn and dusk. The temperature sensor

can monitor daily highs and lows, both indoors and out. Weight scales can be connected

to the external ports of a SPOT to weigh an animal. Multiple sensors can be connected to

one spot at a time, so the SPOT could automatically sense an animal on the scale and

trigger the reader to read the tag of that animal. This data can be compared to the animals

frequency of location at feed bins or other locations to determine which is producing

more animal growth. Sensors can also be placed in feed bins to determine when supply is

low, reporting this to the end user.

 Adding multiple RFID stations at different areas of a farm allows livestock to be

tracked more accurately. This data can then be used to determine land use efficiency.

Areas of little use can either be repurposed or can handle a higher head count, and

overused areas can be identified so that animals can be moved to another area. This

information can also be used to control gates or connectors between different areas based

on their current population. This could mitigate the possibility for overgrazing and

control herd movement without human direction.

 64

REFERENCES

Apache HTTP Server Project. (2009). Retrieved July 6, 2010, from

http://httpd.apache.org/

APHIS. (2010). Questions and Answers: New animal disease traceability framework.

Retrieved February 16, 2010, from

http://www.aphis.usda.gov/publications/animal_health/content/printable_version/f

aq_traceability.pdf

Arduino. (2010). Retrieved July 29, 2010, from http://www.arduino.cc/

Barbari, M., Conti, L., & Simonini, S. (2010). Spatial identification of animals in

different breeding systems to monitor behavior. Retrieved July 25, 2010, from

http://www.diaf.unifi.it/upload/sub/attivitadiricerca/progetti/costruzioni/RFID/RE

T_paper0209_Barbari.pdf

Cattlesoft. (2010). Cattle software - record keeping made easy by cattlemax. Retrieved

July 7, 2010, from http://www.cattlemax.com/

CattleStore.com. (2008). Retrieved July 19, 2010, from http://www.cattlestore.com/

Daily Rfid Co., Limited. (2009). Retrieved July 11, 2010, from http://www.rfid-in-

china.com/2008-08-25/products_detail_2119.html

DHIA Services. (2008). Ear tag central. Retrieved July 19, 2010, from

http://www.eartagcentral.com/home.php

Domdouzis, K., Kumar, B., & Anumba, C. (2007). Radio-frequency identification

(RFID) applications: A brief introduction. Advanced Engineering Informatics,

21(4), 350–355.

Farren, L. (2008). GPS collars track cattle on range. Retrieved February 17, 2010, from

 65

http://hayandforage.com/grazing/0501-gps-collars-track-cattle/

Frost, A. R., Schofield, C. P., Beaulah, S. A., Mottram, T. T., Lines, J. A., & Wathes, C.

M. (1997). A review of livestock monitoring and the need for integrated systems.

Computers and Electronics in Agriculture, 17(2), 139–159.

Grow Systems. (2006). TrackLivestock.net - Web-based livestock tracking software.

Retrieved July 7, 2010, from http://www.tracklivestock.net/default.aspx

Halverson, Gary Don. (2008). RFID animal identification in the U.S. beef industry: A

study of actual costs incurred and price premiums received at the producer level.

Unpublished dissertation, Utah State University, Logan UT.

Herd-Pro Software. (2008). StocKeeper 2003 -- Dairy and livestock software. Retrieved

February 7, 2010, from http://www.herd-

pro.com/default.asp?IncPage=default_content.asp

Hospital RFID system stops baby abduction. (2005, July 19). RFID Gazette. Retrieved

July 24, 2010, from http://www.rfidgazette.org/2005/07/hospital_rfid_s.html

Jeffries, W. (2006). About NoNAIS.org. Retrieved February 23, 2010, from

http://nonais.org/about/

Johnston, L. (2003). New mad cow rules are leftovers. CBS News. Retrieved February

23, 2010, from

http://www.cbsnews.com/stories/2003/12/23/national/main590039.shtml

Midwest MicroSystems. (2008). Cow sense store - cattle products, cow ear tags, and

cattle software for cow calf producers. Retrieved July 7, 2010, from

http://www.shopcowsense.com/default.aspx

NAIS Benefit-Cost Research Team. (2009). Benefit-cost analysis of the national animal

 66

identification system. Retrieved July 7, 2010, from

http://www.naiber.org/Publications/NAIBER/BC.analysis.NAIS.pdf

Netcraft. (2010). June 2010 web server survey. Retrieved July 6, 2010, from

http://news.netcraft.com/archives/2010/06/16/june-2010-web-server-survey.html

QC Supply. (2009). Retrieved July 19, 2010, from

http://www.qcsupply.com/qcsupply/index.jsp

Oracle. (2010a). MySQL :: Dispelling the myths. Retrieved June 12, 2010, from

http://dev.mysql.com/tech-resources/articles/dispelling-the-myths.html

Oracle. (2010b). Squawk. Retrieved July 15, 2010, from https://squawk.dev.java.net/

Rasmussen, W. (1962). The impact of technological change on American agriculture,

1862-1962. The Journal of Economic History, 22(4), 578 - 591.

RFID Tribe. (2010). Livestock Management. Retrieved February 22, 2010, from

http://www.rfidtribe.com/index.php?option=com_content&view=article&id=472

&Itemid=102

Rossing, W. (1999). Animal identification: Introduction and history. Computers and

Electronics in Agriculture, 24(1-2), 1–4.

Sun Microsystems. (2010). SunSPOTWorld - Our vision. Retrieved May 20, 2010, from

http://www.sunspotworld.com/vision.html

The Apache Ant Project. (2010). Frequently asked questions. Retrieved July 15, 2010,

from http://ant.apache.org/faq.html#what-is-ant

The PHP Group. (2010). PHP. Retrieved July 6, 2010, from http://php.net/index.php

U.S. Department of Homeland Security Smart Border Alliance. (2005). RFID feasibility

study final report, Attachment D. Retrieved from

 67

www.dhs.gov/xlibrary/assets/foia/US-VISIT_RFIDattachD.pdf

USDA. (2007). NAUS user guide. Retrieved February 23, 2010, from

http://docs.google.com/viewer?a=v&q=cache:ZOCw5cDGwG4J:animalid.aphis.u

sda.gov/nais/naislibrary/documents/guidelines/NAIS-

UserGuide.pdf+usda+nais+guidelines&hl=en&gl=us&pid=bl&srcid=ADGEESh

DtvztzIrMhdf0Ms-

B74mtvv4fT9wTSGv3Ju1b4wnGFTiFow4nka0dmMGU4Lgu7Wk-

qivqOFwyNL1SljLlDSuaTVeN_d--

DSGl2qp_sFG43UMJWqIINVvHWsOlDbGw_wdxZC40&sig=AHIEtbRY8iESA

9Ppb0eyfJjVkQo3A7vIUg

USDA. (2010a). Animal disease traceablility home. Retrieved July 7, 2010, from

http://www.aphis.usda.gov/traceability/forum/index.shtml

USDA.(2010b). Animal identification information. Retrieved February 23, 2010, from

http://www.aphis.usda.gov/animal_health/animal_diseases/animal_id/

Voulodimos, A. S., Patrikakis, C. Z., Sideridis, A. B., Ntafis, V. A., & Xylouri, E. M.

(2010). A complete farm management system based on animal identification

using RFID technology. Computers and Electronics in Agriculture, 70(2), 380–

388.

ZigBee Alliance. (2010). Retrieved July 29, 2010, from http://www.zigbee.org/

 68

APPENDIX A

A.1 Reader PC C# Code Listing:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using MySql.Data.MySqlClient;
using System.Timers;
using System.Threading;

namespace Demo
{
 public partial class Form2 : Form
 {
 int m_hCom = 0;
 byte m_nSite = 0;
 bool m_bConnect = false;
 byte nTagType = 4;
 int nCount = 0;
 byte[] id;
 byte ret = 1;
 const int IDENTIFYSINGLE = 1;
 const int IDENTIIFYMULTIPLE = 2;
 const int GEN2TAG = 2;
 System.Timers.Timer myTimer = new System.Ti mers.Timer();

 public Form2()
 {
 InitializeComponent();
 }

 private void buttonConnect_Click(object sen der, EventArgs e)
 {
 byte linktype = 1;
 String com_port = "COM1";
 String strState3 = "Error State: ";
 String strComm = com_port;

 ret = Demo.ReaderDll.OpenReader(ref m_h Com, linktype,
 com_por t);
 if (ret == 0)
 {
 bool bSucce = true;
 m_nSite = (byte)0;
 Demo.ReaderDll.SelectStation(m_nSit e);
 int nBaud = 1;

 ret = Demo.ReaderDll.SetBaudRate(m_ hCom, nBaud);

 69

 if (ret == 0&&(Demo.ReaderDll.StopR Fwork(m_hCom)) == 0)
 {
 strState3 += " Stopped RF Work" ;
 }
 else
 {
 strState3 += " Error stopping R F work";
 bSucce = false;
 }

 if (bSucce == true)
 {
 byte[] major = new byte[1], min or = new byte[1];
 ret = Demo.ReaderDll.GetFirmwar eVersion(m_hCom,
 major, minor);
 if (ret == 0)
 {
 m_bConnect = true;
 String strVer = String.Form at(", V{0:D}.{1:D}",
 major[0], m inor[0]);
 strState3 += strVer;
 this.buttonConnect.Enabled = false;
 this.buttonDisconnect.Enabl ed = true;
 }
 }
 }
 else
 {
 strState3 = "Connection to " + strC omm + " Failed!";
 }

 this.labelStatus.Text = strState3;
 }

 private void buttonDisconnect_Click(object sender, EventArgs e)
 {
 if (m_bConnect == true)
 {
 Demo.ReaderDll.ResetReader(m_hCom);
 Demo.ReaderDll.CloseReader(m_hCom);
 this.buttonConnect.Enabled = tru e;
 this.buttonDisconnect.Enabled = fal se;
 this.labelStatus.Text = "Di sconnected";
 }

 }

 private void buttonRead_Click(object sender , EventArgs e)
 {
 id = new byte[150];
 string readID = "";
 // Build in enough overhead for expecte d head count:
 string[] prevID = new string[20];
 // tmpStore MySQL connection
 string MyConString = "SERVER=localhost; " +
 "DATABASE=tmpStore ;" +
 "UID=REPLACE_WITH_ USER_ID;" +

 70

 "PASSWORD=REPLACE_ WITH_PASSWORD;";
 MySqlConnection connection =
 new MySqlConnection(MyConString);
 MySqlCommand command = connection.Creat eCommand();

 try
 {
 connection.Open();
 }
 catch
 {
 MessageBox.Show("Unable to open con nection to
 Database!\nNo tags will be stored.");
 }
 textBoxData.Text += Environment.NewLine +
 "**** Read Values ****" + Environme nt.NewLine;
 ret = Demo.ReaderDll.MultipleTagIdentif y(m_hCom, nTagType,
 ref nCount, id);
 for (int rd = 0; rd < nCount; rd++)
 {
 for (int rdi = 0; rdi < 14; rdi++)
 {
 textBoxData.Text += id[(rd * 14) +
 rdi].ToStri ng("X2");
 readID += id[(rd * 14) +
 rdi].ToStri ng("X2");
 }
 textBoxData.Text += Environment.New Line;

 if (!((IList<string>)prevID).Contai ns(readID))
 {
 command.CommandText = "insert i nto tmpLocation
 values ('" + readID + "', "+
 “NOW(), '3', '1', 'N')";

 try
 {
 command.ExecuteNonQuery();
 }
 catch
 {
 MessageBox.Show("Unable to execute table " +
 insert!\nNo tags will b e stored.");
 }
 }
 prevID[rd] = String.Copy(readID);
 readID = "";
 }

 connection.Close();
 }

 private void buttonClear_Click(object sende r, EventArgs e)
 {
 textBoxData.Clear();
 }

 71

 private void buttonTimedStart_Click(object sender, EventArgs e)
 {
 myTimer.Elapsed += new ElapsedEventHand ler(timedRead);
 myTimer.Interval = 10000;
 myTimer.Start();
 }

 delegate void SetTextCallback(string text);

 private void SetSomeText(string text)
 {
 if(textBoxData.InvokeRequired)
 {
 SetTextCallback d = new SetTextCall back(SetSomeText);
 this.Invoke(d, new object[] { text });
 }
 else
 {
 this.textBoxData.Text += text;
 }
 }

 public void timedRead(object source, Elapse dEventArgs e)
 {
 id = new byte[150];
 string readID = "";
 // Build in enough overhead for expecte d head count.
 string[] prevID = new string[20];
 // tmpStore MySQL connection
 string MyConString = "SERVER=localhost; " +
 "DATABASE=tmpStore ;" +
 "UID=root;" +
 "PASSWORD=dinanm3; ";
 MySqlConnection connection =
 new MySqlConnection(MyConString);
 MySqlCommand command = connection.Creat eCommand();

 try
 {
 connection.Open();
 }
 catch
 {
 MessageBox.Show("Unable to open con nection to “ +
 “Database!\nNo tags will be sto red.");
 }

 SetSomeText(Environment.NewLine + "**** Read Values ****" +
 Environment.NewLine);

 ret = Demo.ReaderDll.MultipleTagIdentif y(m_hCom, nTagType,
 ref nCount, id);
 for (int rd = 0; rd < nCount; rd++)
 {
 for (int rdi = 0; rdi < 14; rdi++)
 {
 SetSomeText(id[(rd * 14) + rdi] .ToString("X2"));

 72

 readID += id[(rd * 14) + rdi].T oString("X2");
 }

 SetSomeText(Environment.NewLine);

 if (!((IList<string>)prevID).Contai ns(readID))
 {
 command.CommandText = "insert i nto tmpLocation “ +
 “values ('" + readID + "', NOW (), '3', '1', 'N')";
 command.ExecuteNonQuery();
 }
 prevID[rd] = String.Copy(readID);
 readID = "";
 }

 connection.Close();
 }

 private void buttonTimedEnd_Click(object se nder, EventArgs e)
 {
 myTimer.Stop();
 }
 }
}

A.2 Reader PC SPOT Code Listing

package org.sunspotworld.demo;

import com.sun.spot.io.j2me.radiogram.*;
import com.sun.spot.util.Utils;

import com.sun.spot.peripheral.ota.OTACommandServer ;
import java.text.DateFormat;
import java.util.Date;
import java.io.DataInput;
import javax.microedition.io.*;
import java.sql.*;

/**
 * This application is the 'reader PC' portion of t he LCTracker Demo
 *
 * @author: Jason Grubb
 */

public class SendDataDemoHostApplication {
 // Broadcast port on which we listen for sensor samples
 private static final int HOST_PORT = 67;

 private void run() throws Exception {
 RadiogramConnection rCon;
 Datagram dg;
 boolean resultsFound = false;
 byte[] b = {};
 byte x = (byte)0xFF;
 DateFormat fmt = DateFormat.getTimeInstance ();

 73

 final String HEXES = "0123456789ABCDEF";
 String readRecord;

 try {
 // Open up a server-side broadcast radi ogram connection
 // to listen for sensor readings being sent by different
 // SPOTs
 rCon = (RadiogramConnection)
 Connector.open("radiogram://broadca st:" + HOST_PORT);
 dg = rCon.newDatagram(rCon.getMaximumLe ngth());
 } catch (Exception e) {
 System.err.println("setUp caught " + e .getMessage());
 throw e;
 }

 Class.forName("com.mysql.jdbc.Driver");
 java.sql.Connection con = DriverManager.get Connection(
 "jdbc:mysql://localhost:3306/tmpSto re", "root",
 "dinanm3");
 PreparedStatement getStatement = con.prepar eStatement(
 "select * from tmplocation where tm pLocation_sent “ +
 “= 'N'");
 ResultSet result = getStatement.executeQuer y();
 PreparedStatement putStatement = con.prepar eStatement(
 "update tmplocation set tmpLocation _sent = 'Y' " +
 "where tmpLocation_sent = 'N'");

 while(true) {
 while(result.next()) {
 readRecord = result.getString(1) + " " +
 result.getString(2) + " " +
 result.getString(3) + " " +
 result.getString(4);
 System.out.println("readRecord = " + readRecord);
 resultsFound = true;
 try {
 dg.reset();
 dg.writeUTF(readRecord);
 rCon.send(dg);
 } catch (Exception e) {
 System.err.println("Caught " + e + " while “ +
 “sending “ + record.");
 throw e;
 }
 }

 if (resultsFound) {
 putStatement.executeUpdate();
 resultsFound = false;
 }
 Utils.sleep(20000); // Check for new ta gs every 10 seconds.
 result = getStatement.executeQuery();
 }
 }

 /**
 * Start up the host application.

 74

 *
 * @param args any command line arguments
 */
 public static void main(String[] args) throws E xception {
 // register the application's name with the OTA Command server
 // & start OTA running
 OTACommandServer.start("SendDataDemo");

 SendDataDemoHostApplication app = new
 SendDataDemoHostApplication();
 app.run();
 }
}

A.3 Base Station PC SPOT Code Listing

package org.sunspotworld.demo;

import com.sun.spot.io.j2me.radiogram.*;
import com.sun.spot.peripheral.ota.OTACommandServer ;
import java.text.DateFormat;
import java.util.Date;
import java.io.DataInput;
import javax.microedition.io.*;
import java.sql.*;

/**
 * This application is the 'reader PC' portion of t he LCTracker Demo
 *
 * @author: Jason Grubb
 */

public class SendDataDemoHostApplication {
 // Broadcast port on which we listen for sensor samples
 private static final int HOST_PORT = 67;

 private void run() throws Exception {
 System.out.println("Starting...");
 RadiogramConnection rCon;
 Datagram dg;
 String readData;

 Class.forName("com.mysql.jdbc.Driver");
 java.sql.Connection con = DriverManager.getConn ection(
 "jdbc:mysql://152.10.146.52:3306/lctracker" , "USERID",
 "PASSWORD");

 try {
 // Open up a server-side broadcast radiogra m connection
 // to listen for sensor readings being sent by different SPOTs
 rCon = (RadiogramConnection) Connector.open ("radiogram://:" +
 HOST_PORT);
 dg = rCon.newDatagram(rCon.getMaximumLeng th());
 } catch (Exception e) {
 System.err.println("setUp caught " + e.getM essage());
 throw e;

 75

 }

 // Main data collection loop
 while (true) {
 try {
 rCon.receive(dg);
 readData = dg.readUTF();

 System.out.println("readData = " + read Data);
 String patternStr = "[]+";
 String[] fields = readData.split(patter nStr);

 PreparedStatement putStatement = con.pr epareStatement(
 "insert into location (" +
 "location_id, location_date, location_a rea,” +
 “location_reader) " +
 "values ('" + fields[0] + "','" + field s[1] + " " +
 fields[2] + "','" + fields[3] + "','" +
 fields[4] + "')");

 System.out.println("insert into locatio n (" +
 "location_id, location_date, location_a rea, “ +
 “location_reader) " +
 "values ('" + fields[0] + "','" + field s[1] + " " +
 fields[2] + "','" + fields[3] + "','" + fields[4] + "')");

 putStatement.executeUpdate();
 } catch (Exception e) {
 System.err.println("Caught " + e +
 " while reading tag IDs.");
 throw e;
 }
 }
 }

 /**
 * Start up the host application.
 *
 * @param args any command line arguments
 */
 public static void main(String[] args) throws E xception {
 OTACommandServer.start("SendDataDemo");

 SendDataDemoHostApplication app = new
 SendDataDemoHostApplication();
 app.run();
 }
}

A.4 Web Display Demo Code Listings

lenovo.php:
<?php
FileName="Connection_php_mysql.htm"
Type="MYSQL"

 76

HTTP="true"
$hostname_lenovo = "IP_ADDRESS";
$database_lenovo = "lctracker";
$username_lenovo = "USERNAME";
$password_lenovo = "PASSWORD";
$lenovo = mysql_pconnect($hostname_lenovo, $usernam e_lenovo,
$password_lenovo) or trigger_error(mysql_error(),E_ USER_ERROR);
?>

layout.css:
#wrapper {
 width: 90%;
 margin: 0px;
 padding-right: 5%;
 padding-left: 5%;
 padding-top: 5px;
}
body {
 margin: 0px;
}
#header {
 height: 60px;
 width: 100%;
 font-family:Arial, Helvetica, sans-serif;
 font-size: 14px;
 line-height: 22px;
 font-weight: bold;
}
#navbar {
 float: right;
 height: 22px;
 width: 300px;
 font-family:Arial, Helvetica, sans-serif;
 font-size: 14px;
 line-height: 22px;
 font-weight: bold;
 border: 1px solid #000;
 background-image:url('../images/navbar_gradient .jpg');
 background-repeat:repeat-x;
 border-radius: 5px;
}
#body {
 /*
 padding: 20px;
*/
 border-right-width: 5px;
 border-left-width: 5px;
 border-right-style: solid;
 border-left-style: solid;
 border-right-color: #252525;
 border-left-color: #252525;
 margin: 0px;
 }
#footer {
 background-color: #252525;
 height: 60px;
 width: 100%;

 77

}
#button a{
 float: left;
 width: 100px;
 height: 25px;
 color: #000;
 text-decoration: none;
 text-align: center;
}
#button a:hover{
 float: left;
 width: 100px;
 height: 25px;
 color: #FFF;
 text-decoration: none;
 text-align: center;
 background-image:url('../images/navbar_gradient _rollover.jpg');
 background-repeat:repeat-x;
}
#logo {
 width: 600px;
 height: 100%;
 float: left;
}

lctracker.php:
<?php require_once('Connections/lenovo.php'); ?>
<?php
if (!function_exists("GetSQLValueString")) {
function GetSQLValueString($theValue, $theType, $th eDefinedValue = "",
$theNotDefinedValue = "")
{
 if (PHP_VERSION < 6) {
 $theValue = get_magic_quotes_gpc() ? stripslash es($theValue) :
$theValue;
 }

 $theValue = function_exists("mysql_real_escape_st ring") ?
mysql_real_escape_string($theValue) : mysql_escape_ string($theValue);

 switch ($theType) {
 case "text":
 $theValue = ($theValue != "") ? "'" . $theVal ue . "'" : "NULL";
 break;
 case "long":
 case "int":
 $theValue = ($theValue != "") ? intval($theVa lue) : "NULL";
 break;
 case "double":
 $theValue = ($theValue != "") ? doubleval($th eValue) : "NULL";
 break;
 case "date":
 $theValue = ($theValue != "") ? "'" . $theVal ue . "'" : "NULL";
 break;
 case "defined":
 $theValue = ($theValue != "") ? $theDefinedVa lue :
$theNotDefinedValue;

 78

 break;
 }
 return $theValue;
}
}

$maxRows_animalData = 20;
$pageNum_animalData = 0;
if (isset($_GET['pageNum_animalData'])) {
 $pageNum_animalData = $_GET['pageNum_animalData'] ;
}
$startRow_animalData = $pageNum_animalData * $maxRo ws_animalData;

mysql_select_db($database_lenovo, $lenovo);
$query_animalData = "SELECT * FROM location, animal WHERE location_id =
 animal_id ORDER BY location_date DESC";
$query_limit_animalData = sprintf("%s LIMIT %d, %d" , $query_animalData,
$startRow_animalData, $maxRows_animalData);
$animalData = mysql_query($query_limit_animalData, $lenovo) or
 die(mysql_error());
$row_animalData = mysql_fetch_assoc($animalData);

if (isset($_GET['totalRows_animalData'])) {
 $totalRows_animalData = $_GET['totalRows_animalDa ta'];
} else {
 $all_animalData = mysql_query($query_animalData);
 $totalRows_animalData = mysql_num_rows($all_anima lData);
}
$totalPages_animalData =
 ceil($totalRows_animalData/$maxRows_animalData) -1;
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi tional//EN"
" http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional .dtd ">
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
<meta http-equiv="Content-Type" content="text/html; />
<title>Untitled Document</title>
<link href="css/layout.css" rel="stylesheet" type=" text/css" />
 <script type='text/javascript'
 src=' http://www.google.com/jsapi '></script>
 <script type='text/javascript'>
 google.load('visualization', '1', {packages:['table']});
 google.setOnLoadCallback(drawTable);
 function drawTable() {
 var data = new google.visualization.DataTab le();
 data.addColumn('string', 'location id');
 data.addColumn('string', 'location date');
 data.addColumn('string', 'location area');
 data.addColumn('string', 'location reader') ;
 data.addColumn('string', 'animal type');
 data.addColumn('string', 'sex');
 data.addColumn('string', 'start date');
 data.addRows(<?php echo $maxRows_animalData ; ?>);
 <?php $rowNum = 0; ?>
 <?php do { ?>
 data.setCell(<?php echo $rowNum ?>, 0, '< ?php echo

 79

 $row_animalData['location_id']; ?>');
 data.setCell(<?php echo $rowNum ?>, 1, '< ?php echo
 $row_animalData['location_date']; ?>');
 data.setCell(<?php echo $rowNum ?>, 2, '< ?php echo
 $row_animalData['location_area']; ?>');
 data.setCell(<?php echo $rowNum ?>, 3, '< ?php echo
 $row_animalData['location_reader']; ? >');
 data.setCell(<?php echo $rowNum ?>, 4, '< ?php echo
 $row_animalData['animal_type']; ?>');
 data.setCell(<?php echo $rowNum ?>, 5, '< ?php echo
 $row_animalData['animal_sex']; ?>');
 data.setCell(<?php echo $rowNum ?>, 6, '< ?php echo
 $row_animalData['animal_start_date']; ?>');
 <?php $rowNum++; ?>
 <?php } while ($row_animalData =
 mysql_fetch_assoc($animalDat a)); ?>
 var table = new
 google.visualization.Table(document.getElem entById('new_div'));
 table.draw(data, {showRowNumber: true});
 }
 </script>
</head>

<body>
<div id="wrapper">
 <div id="header">
 <div id="logo"><h1>LCTracker Data Collectio n Demo</h1></div>
 </div>
 <div id="body">
 <p><div id="new_div"></div></p>
 </div>
</div>
</body>
</html>

 80

VITA

 Jason T. Grubb was born in Boone, NC on July 15, 1978. He attended elementary

schools there and graduated from Watauga High in June 1996. Later that year, he entered

Appalachian State University to study Computer Science. After working part-time for

the university, he accepted a full-time position in the library’s computer support center in

August 1999. In September 2000, he accepted a position with the Instructional

Technology Center’s hardware repair center. He received his Bachelor of Science degree

in Computer Science the following year. Having gained experience with software and

hardware systems, he accepted an Applications Analyst Programmer position with

Appalachian State University’s Information Technology Services division in August

2001. He began studying for his Master of Science degree part-time in spring of 2003.

In April, 2007, Mr. Grubb was promoted to his current position as Business and

Technology Applications Specialist. In August, 2010, he was awarded a Master of

Science degree in Computer Science from Appalachian State University.

